These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 32263112)

  • 1. Substrate-independent, Schiff base interactions to fabricate lysine-functionalized surfaces with fibrinolytic activity.
    Lu XW; Liu W; Wu ZQ; Xiong XH; Liu Q; Zhan WJ; Chen H
    J Mater Chem B; 2016 Feb; 4(8):1458-1465. PubMed ID: 32263112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling the biointerface of electrospun mats for clot lysis: an engineered tissue plasminogen activator link to a lysine-functionalized surface.
    Liu W; Wu Z; Wang Y; Tang Z; Du J; Yuan L; Li D; Chen H
    J Mater Chem B; 2014 Jul; 2(27):4272-4279. PubMed ID: 32261565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysine-poly(2-hydroxyethyl methacrylate) modified polyurethane surface with high lysine density and fibrinolytic activity.
    Li D; Chen H; Wang S; Wu Z; Brash JL
    Acta Biomater; 2011 Mar; 7(3):954-8. PubMed ID: 20977952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysine-derivatized polyurethane as a clot lysing surface: conversion of adsorbed plasminogen to plasmin and clot lysis in vitro.
    McClung WG; Clapper DL; Hu SP; Brash JL
    Biomaterials; 2001 Jul; 22(13):1919-24. PubMed ID: 11396898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfaces having dual fibrinolytic and protein resistant properties by immobilization of lysine on polyurethane through a PEG spacer.
    Chen H; Zhang Y; Li D; Hu X; Wang L; McClung WG; Brash JL
    J Biomed Mater Res A; 2009 Sep; 90(3):940-6. PubMed ID: 18646203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysine-PEG-modified polyurethane as a fibrinolytic surface: Effect of PEG chain length on protein interactions, platelet interactions and clot lysis.
    Li D; Chen H; Glenn McClung W; Brash JL
    Acta Biomater; 2009 Jul; 5(6):1864-71. PubMed ID: 19342321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-resistant and fibrinolytic polyurethane surfaces.
    Wu Z; Chen H; Liu X; Brash JL
    Macromol Biosci; 2012 Jan; 12(1):126-31. PubMed ID: 21998081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of plasminogen from human plasma to lysine-containing surfaces.
    McClung WG; Clapper DL; Hu SP; Brash JL
    J Biomed Mater Res; 2000 Mar; 49(3):409-14. PubMed ID: 10602074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of fibrinolytic system proteins with lysine-containing surfaces.
    McClung WG; Clapper DL; Anderson AB; Babcock DE; Brash JL
    J Biomed Mater Res A; 2003 Sep; 66(4):795-801. PubMed ID: 12926031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibrinolytic properties of lysine-derivatized polyethylene in contact with flowing whole blood (Chandler loop model).
    McClung WG; Babcock DE; Brash JL
    J Biomed Mater Res A; 2007 Jun; 81(3):644-51. PubMed ID: 17187399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfaces having dual affinity for plasminogen and tissue plasminogen activator: in situ plasmin generation and clot lysis.
    Liu Q; Li D; Zhan W; Luan Y; Du H; Liu X; Brash JL; Chen H
    J Mater Chem B; 2015 Sep; 3(34):6939-6944. PubMed ID: 32262543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide-functionalized poly[oligo(ethylene glycol) methacrylate] brushes on dopamine-coated stainless steel for controlled cell adhesion.
    Alas GR; Agarwal R; Collard DM; García AJ
    Acta Biomater; 2017 Sep; 59():108-116. PubMed ID: 28655657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibrinolytic poly(dimethyl siloxane) surfaces.
    Chen H; Wang L; Zhang Y; Li D; McClung WG; Brook MA; Sheardown H; Brash JL
    Macromol Biosci; 2008 Sep; 8(9):863-70. PubMed ID: 18504801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High salt stability and protein resistance of poly(L-lysine)-g-poly(ethylene glycol) copolymers covalently immobilized via aldehyde plasma polymer interlayers on inorganic and polymeric substrates.
    Blättler TM; Pasche S; Textor M; Griesser HJ
    Langmuir; 2006 Jun; 22(13):5760-9. PubMed ID: 16768506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of plasminogen and fibrinogen with model silica glass surfaces: adsorption from plasma and enzymatic activity studies.
    Woodhouse KA; Weitz JI; Brash JL
    J Biomed Mater Res; 1994 Apr; 28(4):407-15. PubMed ID: 8006045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of bacterial adhesion and biofilm formation by dual functional textured and nitric oxide releasing surfaces.
    Xu LC; Wo Y; Meyerhoff ME; Siedlecki CA
    Acta Biomater; 2017 Mar; 51():53-65. PubMed ID: 28087484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trinitrobenzoylated poly(D-lysine) as a stimulator of interactions between plasminogen, plasmin, and tissue-type plasminogen activator.
    Petersen LC; Suenson E
    Biochim Biophys Acta; 1986 Sep; 883(2):313-25. PubMed ID: 2943320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of plasminogen from plasma to lysine-derivatized polyurethane surfaces.
    Woodhouse KA; Brash JL
    Biomaterials; 1992; 13(15):1103-8. PubMed ID: 1493194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoresponsive copolymer decorated surface enables controlling the adsorption of a target protein in plasma.
    Yang W; Tang Z; Luan Y; Liu W; Li D; Chen H
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10146-52. PubMed ID: 24909414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.