These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32263130)

  • 1. A potential mechanism for amino acid-controlled crystal growth of hydroxyapatite.
    Wang Z; Xu Z; Zhao W; Sahai N
    J Mater Chem B; 2015 Dec; 3(47):9157-9167. PubMed ID: 32263130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small molecule-mediated control of hydroxyapatite growth: free energy calculations benchmarked to density functional theory.
    Xu Z; Yang Y; Wang Z; Mkhonto D; Shang C; Liu ZP; Cui Q; Sahai N
    J Comput Chem; 2014 Jan; 35(1):70-81. PubMed ID: 24272540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption processes of Gly and Glu amino acids on hydroxyapatite surfaces at the atomic level.
    Pan H; Tao J; Xu X; Tang R
    Langmuir; 2007 Aug; 23(17):8972-81. PubMed ID: 17658861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface energetics of the hydroxyapatite nanocrystal-water interface: a molecular dynamics study.
    Zhao W; Xu Z; Yang Y; Sahai N
    Langmuir; 2014 Nov; 30(44):13283-92. PubMed ID: 25314374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of acidic amino acid for regulating hydroxyapatite crystal growth.
    Matsumoto T; Okazaki M; Inoue M; Sasaki J; Hamada Y; Takahashi J
    Dent Mater J; 2006 Jun; 25(2):360-4. PubMed ID: 16916241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isoexergonic Conformations of Surface-Bound Citrate Regulated Bioinspired Apatite Nanocrystal Growth.
    Wang Z; Xu Z; Zhao W; Chen W; Miyoshi T; Sahai N
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):28116-28123. PubMed ID: 27593160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-Activity Relationships of Hydroxyapatite-Binding Peptides.
    Ling C; Zhao W; Wang Z; Chen J; Ustriyana P; Gao M; Sahai N
    Langmuir; 2020 Mar; 36(10):2729-2739. PubMed ID: 32078330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cells Recognize and Prefer Bone-like Hydroxyapatite: Biochemical Understanding of Ultrathin Mineral Platelets in Bone.
    Liu C; Zhai H; Zhang Z; Li Y; Xu X; Tang R
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):29997-30004. PubMed ID: 27750425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Dynamics Exploration of the Growth Mechanism of Hydroxyapatite Nanoparticles Regulated by Glutamic Acid.
    Wang W; Xue Z; Wang R; Wang X; Xu D
    J Phys Chem B; 2021 May; 125(19):5078-5088. PubMed ID: 33974433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of positively charged calcium hydroxyapatite nano-crystals and their adsorption behavior of proteins.
    Kandori K; Oda S; Fukusumi M; Morisada Y
    Colloids Surf B Biointerfaces; 2009 Oct; 73(1):140-5. PubMed ID: 19515538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unique roles of acidic amino acids in phase transformation of calcium phosphates.
    Chu X; Jiang W; Zhang Z; Yan Y; Pan H; Xu X; Tang R
    J Phys Chem B; 2011 Feb; 115(5):1151-7. PubMed ID: 21190387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel banana peel pectin mediated green route for the synthesis of hydroxyapatite nanoparticles and their spectral characterization.
    Gopi D; Kanimozhi K; Bhuvaneshwari N; Indira J; Kavitha L
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():589-97. PubMed ID: 24095769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Crystallization of Hydroxyapatite under Hydrothermal Conditions: Role of Sebacic Acid as an Additive.
    In Y; Amornkitbamrung U; Hong MH; Shin H
    ACS Omega; 2020 Oct; 5(42):27204-27210. PubMed ID: 33134681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallinity and solubility characteristics of hydroxyapatite adsorbed amino acid.
    Matsumoto T; Okazaki M; Inoue M; Hamada Y; Taira M; Takahashi J
    Biomaterials; 2002 May; 23(10):2241-7. PubMed ID: 11962665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study of bone sialoprotein in bone biomineralization.
    Yang Y; Mkhonto D; Cui Q; Sahai N
    Cells Tissues Organs; 2011; 194(2-4):182-7. PubMed ID: 21597272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical interaction of glycero-phosphate dimethacrylate (GPDM) with hydroxyapatite and dentin.
    Yoshihara K; Nagaoka N; Hayakawa S; Okihara T; Yoshida Y; Van Meerbeek B
    Dent Mater; 2018 Jul; 34(7):1072-1081. PubMed ID: 29716740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-histidine controls the hydroxyapatite mineralization with plate-like morphology: Effect of concentration and media.
    Chauhan N; Singh Y
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111669. PubMed ID: 33545834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The hydrolysis of anhydrous dicalcium phosphate into hydroxyapatite.
    Ishikawa K; Eanes ED
    J Dent Res; 1993 Feb; 72(2):474-80. PubMed ID: 8380818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silk fibroin/sodium alginate fibrous hydrogels regulated hydroxyapatite crystal growth.
    Ming J; Jiang Z; Wang P; Bie S; Zuo B
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():287-93. PubMed ID: 25842137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homonuclear and heteronuclear NMR studies of a statherin fragment bound to hydroxyapatite crystals.
    Raghunathan V; Gibson JM; Goobes G; Popham JM; Louie EA; Stayton PS; Drobny GP
    J Phys Chem B; 2006 May; 110(18):9324-32. PubMed ID: 16671751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.