These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32263134)

  • 1. The preparation, drug loading and in vitro NIR photothermal-controlled release behavior of raspberry-like hollow polypyrrole microspheres.
    Wang J; Lin F; Chen J; Wang M; Ge X
    J Mater Chem B; 2015 Dec; 3(47):9186-9193. PubMed ID: 32263134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sacrificial template-based synthetic approach of polypyrrole hollow fibers for photothermal therapy.
    Bhattarai DP; Tiwari AP; Maharjan B; Tumurbaatar B; Park CH; Kim CS
    J Colloid Interface Sci; 2019 Jan; 534():447-458. PubMed ID: 30248614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spindle-like polypyrrole hollow nanocapsules as multifunctional platforms for highly effective chemo-photothermal combination therapy of cancer cells in vivo.
    Wang Y; Xiao Y; Tang R
    Chemistry; 2014 Sep; 20(37):11826-34. PubMed ID: 25077695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH/NIR-Responsive Polypyrrole-Functionalized Fibrous Localized Drug-Delivery Platform for Synergistic Cancer Therapy.
    Tiwari AP; Hwang TI; Oh JM; Maharjan B; Chun S; Kim BS; Joshi MK; Park CH; Kim CS
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20256-20270. PubMed ID: 29808986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coating urchinlike gold nanoparticles with polypyrrole thin shells to produce photothermal agents with high stability and photothermal transduction efficiency.
    Li J; Han J; Xu T; Guo C; Bu X; Zhang H; Wang L; Sun H; Yang B
    Langmuir; 2013 Jun; 29(23):7102-10. PubMed ID: 23692027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumour-homing chimeric polypeptide-conjugated polypyrrole nanoparticles for imaging-guided synergistic photothermal and chemical therapy of cancer.
    Sun M; Guo J; Hao H; Tong T; Wang K; Gao W
    Theranostics; 2018; 8(10):2634-2645. PubMed ID: 29774064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoinduced Mild Hyperthermia and Synergistic Chemotherapy by One-Pot-Synthesized Docetaxel-Loaded Poly(lactic-co-glycolic acid)/Polypyrrole Nanocomposites.
    Yuan J; Liu J; Song Q; Wang D; Xie W; Yan H; Zhou J; Wei Y; Sun X; Zhao L
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24445-54. PubMed ID: 27565002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical template-assisted synthesis of monodisperse rattle-type Fe
    Cheng L; Ruan W; Zou B; Liu Y; Wang Y
    Acta Biomater; 2017 Aug; 58():432-441. PubMed ID: 28602854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of inverse-opal lysozyme-imprinted polydopamine/polypyrrole microspheres with near-infrared-light-controlled release property.
    Yang W; Zeng K; Liu J; Chen L; Wang M; Zhuo S; Ge X
    J Colloid Interface Sci; 2019 Jul; 548():37-47. PubMed ID: 30981163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile Approach to Prepare rGO@Fe
    Liang C; Song J; Zhang Y; Guo Y; Deng M; Gao W; Zhang J
    Nanoscale Res Lett; 2020 Apr; 15(1):86. PubMed ID: 32303922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NIR-controlled morphology transformation and pulsatile drug delivery based on multifunctional phototheranostic nanoparticles for photoacoustic imaging-guided photothermal-chemotherapy.
    Yang J; Zhai S; Qin H; Yan H; Xing D; Hu X
    Biomaterials; 2018 Sep; 176():1-12. PubMed ID: 29842986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leakage-free polypyrrole-Au nanostructures for combined Raman detection and photothermal cancer therapy.
    Luo X; Liu X; Pei Y; Ling Y; Wu P; Cai C
    J Mater Chem B; 2017 Oct; 5(39):7949-7962. PubMed ID: 32264196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-infrared light triggers release of Paclitaxel from biodegradable microspheres: photothermal effect and enhanced antitumor activity.
    You J; Shao R; Wei X; Gupta S; Li C
    Small; 2010 May; 6(9):1022-31. PubMed ID: 20394071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging Multifunctional NIR Photothermal Therapy Systems Based on Polypyrrole Nanoparticles.
    Wang M
    Polymers (Basel); 2016 Oct; 8(10):. PubMed ID: 30974650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-pot synthesis of polypyrrole nanoparticles with tunable photothermal conversion and drug loading capacity.
    Guo B; Zhao J; Wu C; Zheng Y; Ye C; Huang M; Wang S
    Colloids Surf B Biointerfaces; 2019 May; 177():346-355. PubMed ID: 30772669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rapid drug release system with a NIR light-activated molecular switch for dual-modality photothermal/antibiotic treatments of subcutaneous abscesses.
    Chiang WL; Lin TT; Sureshbabu R; Chia WT; Hsiao HC; Liu HY; Yang CM; Sung HW
    J Control Release; 2015 Feb; 199():53-62. PubMed ID: 25499553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hollow ZrO
    Tan L; Liu T; Fu C; Wang S; Fu S; Ren J; Meng X
    J Mater Chem B; 2016 Feb; 4(5):859-866. PubMed ID: 32263158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-infrared light triggered drug delivery system for higher efficacy of combined chemo-photothermal treatment.
    Chen Y; Li H; Deng Y; Sun H; Ke X; Ci T
    Acta Biomater; 2017 Mar; 51():374-392. PubMed ID: 28088668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold Nanorods/Polypyrrole/m-SiO
    Wang J; Han J; Zhu C; Han N; Xi J; Fan L; Guo R
    Langmuir; 2018 Dec; 34(48):14661-14669. PubMed ID: 30398351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monodispersed Nitrogen-Containing Carbon Capsules Fabricated from Conjugated Polymer-Coated Particles via Light Irradiation.
    Oyama K; Seike M; Mitamura K; Watase S; Suzuki T; Omura T; Minami H; Hirai T; Nakamura Y; Fujii S
    Langmuir; 2021 Apr; 37(15):4599-4610. PubMed ID: 33827217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.