These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Accelerated Reaction Rates within Self-Assembled Polymer Nanoreactors with Tunable Hydrophobic Microenvironments. Harrison A; P Zeevi M; L Vasey C; D Nguyen M; Tang C Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32784742 [TBL] [Abstract][Full Text] [Related]
3. Precisely Size-Tunable Monodisperse Hairy Plasmonic Nanoparticles via Amphiphilic Star-Like Block Copolymers. Chen Y; Yoon YJ; Pang X; He Y; Jung J; Feng C; Zhang G; Lin Z Small; 2016 Dec; 12(48):6714-6723. PubMed ID: 27805778 [TBL] [Abstract][Full Text] [Related]
4. Engineered clathrin nanoreactors provide tunable control over gold nanoparticle synthesis and clustering. Schoen AP; Huggins KNL; Heilshorn SC J Mater Chem B; 2013 Dec; 1(48):6662-6669. PubMed ID: 32261275 [TBL] [Abstract][Full Text] [Related]
5. Amphiphilic Polymer Nanoreactors for Multiple Step, One-Pot Reactions and Spontaneous Product Separation. Harrison A; Tang C Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34207009 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of Au@Ag core-shell nanoparticles using polyelectrolyte multilayers as nanoreactors. Zhang X; Wang H; Su Z Langmuir; 2012 Nov; 28(44):15705-12. PubMed ID: 23075212 [TBL] [Abstract][Full Text] [Related]
7. Size-tunable polymeric nanoreactors for one-pot synthesis and encapsulation of quantum dots. Qian G; Zhu B; Wang Y; Deng S; Hu A Macromol Rapid Commun; 2012 Aug; 33(16):1393-8. PubMed ID: 22610539 [TBL] [Abstract][Full Text] [Related]
8. Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles. Chen Y; Wang Z; He Y; Yoon YJ; Jung J; Zhang G; Lin Z Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1391-E1400. PubMed ID: 29386380 [TBL] [Abstract][Full Text] [Related]
9. "Mixed-charge self-assembled monolayers" as a facile method to design pH-induced aggregation of large gold nanoparticles for near-infrared photothermal cancer therapy. Li H; Liu X; Huang N; Ren K; Jin Q; Ji J ACS Appl Mater Interfaces; 2014; 6(21):18930-7. PubMed ID: 25286378 [TBL] [Abstract][Full Text] [Related]
10. A Facile Approach for Synthesis and Intracellular Delivery of Size Tunable Cationic Peptide Functionalized Gold Nanohybrids in Cancer Cells. Bansal K; Aqdas M; Kumar M; Bala R; Singh S; Agrewala JN; Katare OP; Sharma RK; Wangoo N Bioconjug Chem; 2018 Apr; 29(4):1102-1110. PubMed ID: 29489340 [TBL] [Abstract][Full Text] [Related]
11. Green synthesis of gold nanoparticles using glycerol-incorporated nanosized liposomes. Genç R; Clergeaud G; Ortiz M; O'Sullivan CK Langmuir; 2011 Sep; 27(17):10894-900. PubMed ID: 21786795 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of polymer nanocavities with tailored openings. Tan LH; Xing S; Chen T; Chen G; Huang X; Zhang H; Chen H ACS Nano; 2009 Nov; 3(11):3469-74. PubMed ID: 19817393 [TBL] [Abstract][Full Text] [Related]
13. Controlled synthesis of gold nanoparticles by fluorescent light irradiation. Kim JH; Lavin BW; Burnett RD; Boote BW Nanotechnology; 2011 Jul; 22(28):285602. PubMed ID: 21642758 [TBL] [Abstract][Full Text] [Related]
18. Preparation of Magnetic Tubular Nanoreactors for Highly Efficient Catalysis. Yang S; Peng L; Cao C; Wei F; Liu J; Zhu YN; Liu C; Wang X; Song W Chem Asian J; 2016 Oct; 11(19):2797-2801. PubMed ID: 27123561 [TBL] [Abstract][Full Text] [Related]
19. Size-Tunable Gd Zhou L; Yang T; Wang J; Wang Q; Lv X; Ke H; Guo Z; Shen J; Wang Y; Xing C; Chen H Theranostics; 2017; 7(3):764-774. PubMed ID: 28255365 [TBL] [Abstract][Full Text] [Related]