BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32263155)

  • 1. Enhanced cell membrane enrichment and subsequent cellular internalization of quantum dots via cell surface engineering: illuminating plasma membranes with quantum dots.
    Wang HY; Hua XW; Jia HR; Liu P; Gu N; Chen Z; Wu FG
    J Mater Chem B; 2016 Feb; 4(5):834-843. PubMed ID: 32263155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adhesion of CdTe quantum dots on model membranes and internalization into RBL-2H3 cells.
    Zhang M; Wei X; Ding L; Hu J; Jiang W
    Environ Pollut; 2017 Jun; 225():419-427. PubMed ID: 28284550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake and Transport of Ultrafine Nanoparticles (Quantum Dots) in the Nasal Mucosa.
    Bejgum BC; Donovan MD
    Mol Pharm; 2021 Jan; 18(1):429-440. PubMed ID: 33346666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-specific cellular uptake of surface-functionalized quantum dots.
    Kelf TA; Sreenivasan VK; Sun J; Kim EJ; Goldys EM; Zvyagin AV
    Nanotechnology; 2010 Jul; 21(28):285105. PubMed ID: 20585157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of a biotin functionalized QD assay for determining available binding sites on electrospun nanofiber membrane.
    Marek P; Senecal K; Nida D; Magnone J; Senecal A
    J Nanobiotechnology; 2011 Oct; 9():48. PubMed ID: 22024374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delivering quantum dot-peptide bioconjugates to the cellular cytosol: escaping from the endolysosomal system.
    Delehanty JB; Bradburne CE; Boeneman K; Susumu K; Farrell D; Mei BC; Blanco-Canosa JB; Dawson G; Dawson PE; Mattoussi H; Medintz IL
    Integr Biol (Camb); 2010 Jun; 2(5-6):265-77. PubMed ID: 20535418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monomeric Covalent-Avidin for Rapid and Covalent Labeling of Quantum Dots to Cell Surface Proteins.
    Choi H; Lee JM; Jung Y
    Adv Biosyst; 2019 Mar; 3(3):e1800288. PubMed ID: 32627405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticles Internalization through HIP-55-Dependent Clathrin Endocytosis Pathway.
    Guan K; Liu K; Jiang Y; Bian J; Gao Y; Dong E; Li Z
    Nano Lett; 2023 Dec; 23(24):11477-11484. PubMed ID: 38084909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcellular Fate of a Fluorescent Cholesterol-Poly(ethylene glycol) Conjugate: An Excellent Plasma Membrane Imaging Reagent.
    Chen X; Zhang X; Wang HY; Chen Z; Wu FG
    Langmuir; 2016 Oct; 32(39):10126-10135. PubMed ID: 27597442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress.
    Yan M; Zhang Y; Qin H; Liu K; Guo M; Ge Y; Xu M; Sun Y; Zheng X
    Int J Nanomedicine; 2016; 11():529-42. PubMed ID: 26893560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial polymeric receptors on the cell surface promote the efficient cellular uptake of quantum dots.
    Niikura K; Nambara K; Okajima T; Kamitani R; Aoki S; Matsuo Y; Ijiro K
    Org Biomol Chem; 2011 Aug; 9(16):5787-92. PubMed ID: 21738911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport and release of colloidal 3-mercaptopropionic acid-coated CdSe-CdS/ZnS core-multishell quantum dots in human umbilical vein endothelial cells.
    Fontana JM; Yin H; Chen Y; Florez R; Brismar H; Fu Y
    Int J Nanomedicine; 2017; 12():8615-8629. PubMed ID: 29270011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aptamer-mediated nanoparticle-based protein labeling platform for intracellular imaging and tracking endocytosis dynamics.
    Chen LQ; Xiao SJ; Hu PP; Peng L; Ma J; Luo LF; Li YF; Huang CZ
    Anal Chem; 2012 Apr; 84(7):3099-110. PubMed ID: 22423600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endo- and exocytosis of zwitterionic quantum dot nanoparticles by live HeLa cells.
    Jiang X; Röcker C; Hafner M; Brandholt S; Dörlich RM; Nienhaus GU
    ACS Nano; 2010 Nov; 4(11):6787-97. PubMed ID: 21028844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Movement of a Quantum Dot Covered with Cytocompatible and pH-Responsible Phospholipid Polymer Chains under a Cellular Environment.
    Liu Y; Oda H; Inoue Y; Ishihara K
    Biomacromolecules; 2016 Dec; 17(12):3986-3994. PubMed ID: 27791358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zwitterionic surface coating of quantum dots reduces protein adsorption and cellular uptake.
    Ashraf S; Park J; Bichelberger MA; Kantner K; Hartmann R; Maffre P; Said AH; Feliu N; Lee J; Lee D; Nienhaus GU; Kim S; Parak WJ
    Nanoscale; 2016 Oct; 8(41):17794-17800. PubMed ID: 27722485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced intracellular delivery of quantum dot and adenovirus nanoparticles triggered by acidic pH via surface charge reversal.
    Mok H; Park JW; Park TG
    Bioconjug Chem; 2008 Apr; 19(4):797-801. PubMed ID: 18363345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-engineered skin mesenchymal stem cells: potential vehicles for tumour-targeted quantum-dot delivery.
    Saulite L; Dapkute D; Pleiko K; Popena I; Steponkiene S; Rotomskis R; Riekstina U
    Beilstein J Nanotechnol; 2017; 8():1218-1230. PubMed ID: 28685122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PEGylated and MMP-2 specifically dePEGylated quantum dots: comparative evaluation of cellular uptake.
    Mok H; Bae KH; Ahn CH; Park TG
    Langmuir; 2009 Feb; 25(3):1645-50. PubMed ID: 19117377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmembrane delivery of the cell-penetrating peptide conjugated semiconductor quantum dots.
    Chen B; Liu Q; Zhang Y; Xu L; Fang X
    Langmuir; 2008 Oct; 24(20):11866-71. PubMed ID: 18823093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.