BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32263243)

  • 1. A simultaneous 3D printing process for the fabrication of bioceramic and cell-laden hydrogel core/shell scaffolds with potential application in bone tissue regeneration.
    Raja N; Yun HS
    J Mater Chem B; 2016 Jul; 4(27):4707-4716. PubMed ID: 32263243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional Calcium-Deficient Hydroxyl Apatite-Alginate Core-Shell-Structured Bone Substitutes as Cell and Drug Delivery Vehicles for Bone Tissue Regeneration.
    Raja N; Park H; Choi YJ; Yun HS
    ACS Biomater Sci Eng; 2021 Mar; 7(3):1123-1133. PubMed ID: 33541070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simultaneous process of 3D magnesium phosphate scaffold fabrication and bioactive substance loading for hard tissue regeneration.
    Lee J; Farag MM; Park EK; Lim J; Yun HS
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():252-60. PubMed ID: 24433911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of direct loading of phytoestrogens into the calcium phosphate scaffold on osteoporotic bone tissue regeneration.
    Tripathi G; Raja N; Yun HS
    J Mater Chem B; 2015 Nov; 3(44):8694-8703. PubMed ID: 32262726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
    Bendtsen ST; Quinnell SP; Wei M
    J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Innovative Cryopreservation Process Using a Modified Core/Shell Cell-Printing with a Microfluidic System for Cell-Laden Scaffolds.
    Lee JY; Koo Y; Kim G
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9257-9268. PubMed ID: 29473732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional cell-laden alginate scaffolds consisting of core/shell struts for tissue regeneration.
    Ahn S; Lee H; Kim G
    Carbohydr Polym; 2013 Oct; 98(1):936-42. PubMed ID: 23987431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradable calcium deficient hydroxyapatite/poly(lactic-glycolic acid copolymer) bilayer scaffold through integral molding 3D printing for bone defect repair.
    Wu N; Liu J; Ma W; Dong X; Wang F; Yang D; Xu Y
    Biofabrication; 2021 Mar; 13(2):. PubMed ID: 33202398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Support-less ceramic 3D printing of bioceramic structures using a hydrogel bath.
    Raja N; Park H; Gal CW; Sung A; Choi YJ; Yun HS
    Biofabrication; 2023 Apr; 15(3):. PubMed ID: 36996843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Poly(lactic acid)-Hydrogel Core-Shell Scaffolds Highly Support MSCs' Viability, Proliferation and Osteogenic Differentiation.
    Pasini C; Pandini S; Re F; Ferroni M; Borsani E; Russo D; Sartore L
    Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Fabrication of Complex Scaffolds for Bone Defect Healing: Combined 3D Plotting of a Calcium Phosphate Cement and a Growth Factor-Loaded Hydrogel.
    Ahlfeld T; Akkineni AR; Förster Y; Köhler T; Knaack S; Gelinsky M; Lode A
    Ann Biomed Eng; 2017 Jan; 45(1):224-236. PubMed ID: 27384939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of biomimetic bone grafts with multi-material 3D printing.
    Sears N; Dhavalikar P; Whitely M; Cosgriff-Hernandez E
    Biofabrication; 2017 May; 9(2):025020. PubMed ID: 28530207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An innovative cell-laden α-TCP/collagen scaffold fabricated using a two-step printing process for potential application in regenerating hard tissues.
    Kim WJ; Yun HS; Kim GH
    Sci Rep; 2017 Jun; 7(1):3181. PubMed ID: 28600538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryogenic Coaxial Printing for 3D Shell/Core Tissue Engineering Scaffold with Polymeric Shell and Drug-Loaded Core.
    Liu T; Yang B; Tian W; Zhang X; Wu B
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D-Printed Bioactive Ca
    Yang C; Wang X; Ma B; Zhu H; Huan Z; Ma N; Wu C; Chang J
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):5757-5767. PubMed ID: 28117976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.
    Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z
    Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonstoichiometric wollastonite bioceramic scaffolds with core-shell pore struts and adjustable mechanical and biodegradable properties.
    Jin Z; Wu R; Shen J; Yang X; Shen M; Xu W; Huang R; Zhang L; Yang G; Gao C; Gou Z; Xu S
    J Mech Behav Biomed Mater; 2018 Dec; 88():140-149. PubMed ID: 30170193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering.
    Fahimipour F; Rasoulianboroujeni M; Dashtimoghadam E; Khoshroo K; Tahriri M; Bastami F; Lobner D; Tayebi L
    Dent Mater; 2017 Nov; 33(11):1205-1216. PubMed ID: 28882369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanically reinforced cell-laden scaffolds formed using alginate-based bioink printed onto the surface of a PCL/alginate mesh structure for regeneration of hard tissue.
    Kim YB; Lee H; Yang GH; Choi CH; Lee D; Hwang H; Jung WK; Yoon H; Kim GH
    J Colloid Interface Sci; 2016 Jan; 461():359-368. PubMed ID: 26409783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.