These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32263266)

  • 1. The synergetic effect of nano-structures and silicon-substitution on the properties of hydroxyapatite scaffolds for bone regeneration.
    Xia L; Zhang N; Wang X; Zhou Y; Mao L; Liu J; Jiang X; Zhang Z; Chang J; Lin K; Fang B
    J Mater Chem B; 2016 May; 4(19):3313-3323. PubMed ID: 32263266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced osteogenesis through nano-structured surface design of macroporous hydroxyapatite bioceramic scaffolds via activation of ERK and p38 MAPK signaling pathways.
    Xia L; Lin K; Jiang X; Xu Y; Zhang M; Chang J; Zhang Z
    J Mater Chem B; 2013 Oct; 1(40):5403-5416. PubMed ID: 32261247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose derived stem cells.
    Xia L; Lin K; Jiang X; Fang B; Xu Y; Liu J; Zeng D; Zhang M; Zhang X; Chang J; Zhang Z
    Biomaterials; 2014 Oct; 35(30):8514-27. PubMed ID: 25002263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic Effect of Micro-Nano-Hybrid Surfaces and Sr Doping on the Osteogenic and Angiogenic Capacity of Hydroxyapatite Bioceramics Scaffolds.
    Jiang S; Wang X; Ma Y; Zhou Y; Liu L; Yu F; Fang B; Lin K; Xia L; Cai M
    Int J Nanomedicine; 2022; 17():783-797. PubMed ID: 35221685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strontium (Sr) strengthens the silicon (Si) upon osteoblast proliferation, osteogenic differentiation and angiogenic factor expression.
    Lin K; Wang X; Zhang N; Shen Y
    J Mater Chem B; 2016 Jun; 4(21):3632-3638. PubMed ID: 32263301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration.
    Mao L; Xia L; Chang J; Liu J; Jiang L; Wu C; Fang B
    Acta Biomater; 2017 Oct; 61():217-232. PubMed ID: 28807800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics.
    Lin K; Xia L; Li H; Jiang X; Pan H; Xu Y; Lu WW; Zhang Z; Chang J
    Biomaterials; 2013 Dec; 34(38):10028-42. PubMed ID: 24095251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced bone regeneration by silicon-substituted hydroxyapatite derived from cuttlefish bone.
    Kim BS; Yang SS; Yoon JH; Lee J
    Clin Oral Implants Res; 2017 Jan; 28(1):49-56. PubMed ID: 26073102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrothermal synthesis and characterization of Si and Sr co-substituted hydroxyapatite nanowires using strontium containing calcium silicate as precursors.
    Zhang N; Zhai D; Chen L; Zou Z; Lin K; Chang J
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():286-91. PubMed ID: 24582251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering.
    Kim SS; Sun Park M; Jeon O; Yong Choi C; Kim BS
    Biomaterials; 2006 Mar; 27(8):1399-409. PubMed ID: 16169074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the micro-pattern and nano-topography of hydroxyapatite bioceramics on stimulating osteogenic differentiation of mesenchymal stem cells.
    Zhao C; Wang X; Gao L; Jing L; Zhou Q; Chang J
    Acta Biomater; 2018 Jun; 73():509-521. PubMed ID: 29678674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response.
    Balamurugan A; Rebelo AH; Lemos AF; Rocha JH; Ventura JM; Ferreira JM
    Dent Mater; 2008 Oct; 24(10):1374-80. PubMed ID: 18417203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zero-order controlled release of BMP2-derived peptide P24 from the chitosan scaffold by chemical grafting modification technique for promotion of osteogenesis
    Chen Y; Liu X; Liu R; Gong Y; Wang M; Huang Q; Feng Q; Yu B
    Theranostics; 2017; 7(5):1072-1087. PubMed ID: 28435449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Appreciable biosafety, biocompatibility and osteogenic capability of 3D printed nonstoichiometric wollastonite scaffolds favorable for clinical translation.
    Wei Y; Wang Z; Lei L; Han J; Zhong S; Yang X; Gou Z; Chen L
    J Orthop Translat; 2024 Mar; 45():88-99. PubMed ID: 38516038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay between surface chemistry and osteogenic behaviour of sulphate substituted nano-hydroxyapatite.
    G R; Venkatesan B; Jaisankar SN; Rajashree P; Balakumar S
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111617. PubMed ID: 33545812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo bone formation following transplantation of human adipose-derived stromal cells that are not differentiated osteogenically.
    Jeon O; Rhie JW; Kwon IK; Kim JH; Kim BS; Lee SH
    Tissue Eng Part A; 2008 Aug; 14(8):1285-94. PubMed ID: 18593269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-Printed Bioactive Ca
    Yang C; Wang X; Ma B; Zhu H; Huan Z; Ma N; Wu C; Chang J
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):5757-5767. PubMed ID: 28117976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Osteogenesis by Molybdenum Disulfide Nanosheet Reinforced Hydroxyapatite Nanocomposite Scaffolds.
    Yadav U; Mishra H; Singh V; Kashyap S; Srivastava A; Yadav S; Saxena PS
    ACS Biomater Sci Eng; 2019 Sep; 5(9):4511-4521. PubMed ID: 33438416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D printing of strontium-doped hydroxyapatite based composite scaffolds for repairing critical-sized rabbit calvarial defects.
    Luo Y; Chen S; Shi Y; Ma J
    Biomed Mater; 2018 Aug; 13(6):065004. PubMed ID: 30091422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.