These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32263327)

  • 1. Nanoengineering gold particle composite fibers for cardiac tissue engineering.
    Shevach M; Maoz BM; Feiner R; Shapira A; Dvir T
    J Mater Chem B; 2013 Oct; 1(39):5210-5217. PubMed ID: 32263327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Albumin fiber scaffolds for engineering functional cardiac tissues.
    Fleischer S; Shapira A; Regev O; Nseir N; Zussman E; Dvir T
    Biotechnol Bioeng; 2014 Jun; 111(6):1246-57. PubMed ID: 24420414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs.
    Navaei A; Saini H; Christenson W; Sullivan RT; Ros R; Nikkhah M
    Acta Biomater; 2016 Sep; 41():133-46. PubMed ID: 27212425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the conductivity and inner structure of electrospun fibers to promote cardiomyocyte elongation and synchronous beating.
    Liu Y; Lu J; Xu G; Wei J; Zhang Z; Li X
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():865-74. PubMed ID: 27612781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanoparticle-decellularized matrix hybrids for cardiac tissue engineering.
    Shevach M; Fleischer S; Shapira A; Dvir T
    Nano Lett; 2014 Oct; 14(10):5792-6. PubMed ID: 25176294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues.
    Fleischer S; Shevach M; Feiner R; Dvir T
    Nanoscale; 2014 Aug; 6(16):9410-4. PubMed ID: 24744098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spring-like fibers for cardiac tissue engineering.
    Fleischer S; Feiner R; Shapira A; Ji J; Sui X; Daniel Wagner H; Dvir T
    Biomaterials; 2013 Nov; 34(34):8599-606. PubMed ID: 23953840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of fiber diameter on the assembly of functional 3D cardiac patches.
    Fleischer S; Miller J; Hurowitz H; Shapira A; Dvir T
    Nanotechnology; 2015 Jul; 26(29):291002. PubMed ID: 26133998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uniformly-aligned gelatin/polycaprolactone fibers promote proliferation in adipose-derived stem cells and have distinct effects on cardiac cell differentiation.
    Zhang D; Yu K; Hu X; Jiang A
    Int J Clin Exp Pathol; 2021; 14(6):680-692. PubMed ID: 34239669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of electrically conductive and non-conductive nanocomposite scaffolds on the maturation and excitability of engineered cardiac tissues.
    Navaei A; Rahmani Eliato K; Ros R; Migrino RQ; Willis BC; Nikkhah M
    Biomater Sci; 2019 Jan; 7(2):585-595. PubMed ID: 30426116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of electrospun poly(D,L-lactide) fibrous scaffold with nanoporous surface on attachment of porcine esophageal epithelial cells and protein adsorption.
    Leong MF; Chian KS; Mhaisalkar PS; Ong WF; Ratner BD
    J Biomed Mater Res A; 2009 Jun; 89(4):1040-8. PubMed ID: 18478557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators.
    Wang L; Wu Y; Hu T; Guo B; Ma PX
    Acta Biomater; 2017 Sep; 59():68-81. PubMed ID: 28663141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiomyocyte coculture on layered fibrous scaffolds assembled from micropatterned electrospun mats.
    Liu Y; Xu G; Wei J; Wu Q; Li X
    Mater Sci Eng C Mater Biol Appl; 2017 Dec; 81():500-510. PubMed ID: 28888004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of omentum-based matrix for engineering vascularized cardiac tissues.
    Shevach M; Soffer-Tsur N; Fleischer S; Shapira A; Dvir T
    Biofabrication; 2014 Jun; 6(2):024101. PubMed ID: 24464690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold Nanorod-Based Engineered Cardiac Patch for Suture-Free Engraftment by Near IR.
    Malki M; Fleischer S; Shapira A; Dvir T
    Nano Lett; 2018 Jul; 18(7):4069-4073. PubMed ID: 29406721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fiber alignment and coculture with fibroblasts improves the differentiated phenotype of murine embryonic stem cell-derived cardiomyocytes for cardiac tissue engineering.
    Parrag IC; Zandstra PW; Woodhouse KA
    Biotechnol Bioeng; 2012 Mar; 109(3):813-22. PubMed ID: 22006660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells.
    Wanjare M; Hou L; Nakayama KH; Kim JJ; Mezak NP; Abilez OJ; Tzatzalos E; Wu JC; Huang NF
    Biomater Sci; 2017 Jul; 5(8):1567-1578. PubMed ID: 28715029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and characterization of gold nanoparticle-doped electrospun PCL/chitosan nanofibrous scaffolds for nerve tissue engineering.
    Saderi N; Rajabi M; Akbari B; Firouzi M; Hassannejad Z
    J Mater Sci Mater Med; 2018 Aug; 29(9):134. PubMed ID: 30120577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds.
    Li M; Mondrinos MJ; Chen X; Gandhi MR; Ko FK; Lelkes PI
    J Biomed Mater Res A; 2006 Dec; 79(4):963-73. PubMed ID: 16948146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.