BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 32263342)

  • 41. Nd
    Ding MY; Hou JJ; Yuan YJ; Bai WF; Lu CH; Xi JH; Ji ZG; Chen DQ
    Nanotechnology; 2018 Aug; 29(34):345704. PubMed ID: 29869998
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microlens array enhanced upconversion luminescence at low excitation irradiance.
    Liu Q; Liu H; Li D; Qiao W; Chen G; Ågren H
    Nanoscale; 2019 Aug; 11(29):14070-14078. PubMed ID: 31313798
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multi-wavelength pumped upconversion enhancement induced by Cu
    Zhou D; Tao L; Cui S; Jiao J; Hu J; Xu W
    Opt Lett; 2021 Jan; 46(1):5-8. PubMed ID: 33362008
    [No Abstract]   [Full Text] [Related]  

  • 44. Engineering water-tolerant core/shell upconversion nanoparticles for optical temperature sensing.
    Alkahtani MH; Gomes CL; Hemmer PR
    Opt Lett; 2017 Jul; 42(13):2451-2454. PubMed ID: 28957257
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optimization of upconversion luminescence of Nd(3+)-sensitized BaGdF5-based nanostructures and their application in dual-modality imaging and drug delivery.
    He F; Li C; Zhang X; Chen Y; Deng X; Liu B; Hou Z; Huang S; Jin D; Lin J
    Dalton Trans; 2016 Jan; 45(4):1708-16. PubMed ID: 26700503
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Facile synthesis of 5 nm NaYF₄:Yb/Er nanoparticles for targeted upconversion imaging of cancer cells.
    Hu Y; Wu B; Jin Q; Wang X; Li Y; Sun Y; Huo J; Zhao X
    Talanta; 2016 May; 152():504-12. PubMed ID: 26992548
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dye-sensitized core-shell NaGdF
    Chen H; Wang W; Ji C; Wang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 248():119281. PubMed ID: 33310610
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Nd
    Yang M; Wang H; Wang Z; Han Z; Gu Y
    Biomater Sci; 2019 Mar; 7(4):1686-1695. PubMed ID: 30742148
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nd
    Hao S; Chen G; Yang C; Shao W; Wei W; Liu Y; Prasad PN
    Nanoscale; 2017 Aug; 9(30):10633-10638. PubMed ID: 28656192
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Manipulation of up-conversion emission in NaYF
    Grzyb T; Kamiński P; Przybylska D; Tymiński A; Sanz-Rodríguez F; Haro Gonzalez P
    Nanoscale; 2021 Apr; 13(15):7322-7333. PubMed ID: 33889899
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Labeling and long-term tracking of bone marrow mesenchymal stem cells in vitro using NaYF4:Yb(3+),Er(3+) upconversion nanoparticles.
    Ma Y; Ji Y; You M; Wang S; Dong Y; Jin G; Lin M; Wang Q; Li A; Zhang X; Xu F
    Acta Biomater; 2016 Sep; 42():199-208. PubMed ID: 27435964
    [TBL] [Abstract][Full Text] [Related]  

  • 52. UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway.
    Hou Z; Zhang Y; Deng K; Chen Y; Li X; Deng X; Cheng Z; Lian H; Li C; Lin J
    ACS Nano; 2015 Mar; 9(3):2584-99. PubMed ID: 25692960
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Distinct mechanisms for the upconversion of NaYF
    Shin K; Jung T; Lee E; Lee G; Goh Y; Heo J; Jung M; Jo EJ; Lee H; Kim MG; Lee KT
    Phys Chem Chem Phys; 2017 Apr; 19(15):9739-9744. PubMed ID: 28367577
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis of monodisperse NaYF4:Yb, Tm@SiO2 nanoparticles with intense ultraviolet upconversion luminescence.
    Shi F; Zhai X; Zheng K; Zhao D; Qin W
    J Nanosci Nanotechnol; 2011 Nov; 11(11):9912-5. PubMed ID: 22413320
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detection of nitroaromatics in aqueous media based on luminescence resonance energy transfer using upconversion nanoparticles as energy donors.
    Liu L; Hua R; Chen B; Qi X; Zhang W; Zhang X; Liu Z; Ding T; Yang S; Zhang T; Cheng L
    Nanotechnology; 2019 Sep; 30(37):375703. PubMed ID: 31163404
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Upconversion FRET quantitation: the role of donor photoexcitation mode and compositional architecture on the decay and intensity based responses.
    Kotulska AM; Pilch-Wróbel A; Lahtinen S; Soukka T; Bednarkiewicz A
    Light Sci Appl; 2022 Aug; 11(1):256. PubMed ID: 35986019
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nd
    Li J; Zhu X; Xue M; Feng W; Ma R; Li F
    Inorg Chem; 2016 Oct; 55(20):10278-10283. PubMed ID: 27684997
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Filtration Shell Mediated Power Density Independent Orthogonal Excitations-Emissions Upconversion Luminescence.
    Li X; Guo Z; Zhao T; Lu Y; Zhou L; Zhao D; Zhang F
    Angew Chem Int Ed Engl; 2016 Feb; 55(7):2464-9. PubMed ID: 26762564
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In-depth insight into the Yb
    Wang Y; Zhou S; Sun F; Hu P; Zhong W; Fu J
    Nanoscale; 2022 Nov; 14(43):16156-16169. PubMed ID: 36269343
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Markedly enhanced up-conversion luminescence by combining IR-808 dye sensitization and core-shell-shell structures.
    Xu J; Sun M; Kuang Y; Bi H; Liu B; Yang D; Lv R; Gai S; He F; Yang P
    Dalton Trans; 2017 Jan; 46(5):1495-1501. PubMed ID: 28091663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.