These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 32263463)
1. Biodegradable shape memory polymers functionalized with anti-biofouling interpenetrating polymer networks. Dueramae I; Nishida M; Nakaji-Hirabayashi T; Matsumura K; Kitano H J Mater Chem B; 2016 Aug; 4(32):5394-5404. PubMed ID: 32263463 [TBL] [Abstract][Full Text] [Related]
2. Mechanically robust enzymatically degradable shape memory polyurethane urea with a rapid recovery response induced by NIR. Li X; Liu W; Li Y; Lan W; Zhao D; Wu H; Feng Y; He X; Li Z; Li J; Luo F; Tan H J Mater Chem B; 2020 Jun; 8(23):5117-5130. PubMed ID: 32412029 [TBL] [Abstract][Full Text] [Related]
3. NIR Photothermal-Responsive Shape Memory Polyurethane with Protein-Inspired Aggregated Chymotrypsin-Sensitive Degradable Domains. Yang R; Liu W; Song N; Li X; Li Z; Luo F; Li J; Tan H Macromol Rapid Commun; 2022 Nov; 43(21):e2200490. PubMed ID: 35836315 [TBL] [Abstract][Full Text] [Related]
5. Sustainable Shape-Memory Polyurethane from Abietic Acid: Superior Mechanical Properties and Shape Recovery with Tunable Transition Temperatures. Gnanasekar P; Chen J; Goswami SR; Chen H; Yan N ChemSusChem; 2020 Nov; 13(21):5749-5761. PubMed ID: 32882105 [TBL] [Abstract][Full Text] [Related]
6. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties. Jin X; Yuan J; Shen J Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441 [TBL] [Abstract][Full Text] [Related]
7. The Difference in Molecular Orientation and Interphase Structure of SiO Shi S; Xu T; Wang D; Oeser M Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32887279 [TBL] [Abstract][Full Text] [Related]
8. Bending shape memory behaviours of carbon fibre reinforced polyurethane-type shape memory polymer composites under relatively small deformation: Characterisation and computational simulation. Cheng X; Chen Y; Dai S; Bilek MMM; Bao S; Ye L J Mech Behav Biomed Mater; 2019 Dec; 100():103372. PubMed ID: 31369958 [TBL] [Abstract][Full Text] [Related]
9. Electroactive shape memory polyurethane composites reinforced with octadecyl isocyanate-functionalized multi-walled carbon nanotubes. Sun Y; Teng J; Kuang Y; Yang S; Yang J; Mao H; Gu Z Front Bioeng Biotechnol; 2022; 10():964080. PubMed ID: 35910020 [TBL] [Abstract][Full Text] [Related]
10. Effect of soft segment crystallization and hard segment physical crosslink on shape memory function in antibacterial segmented polyurethane ionomers. Zhu Y; Hu J; Yeung K Acta Biomater; 2009 Nov; 5(9):3346-57. PubMed ID: 19460466 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications. Barrioni BR; de Carvalho SM; Oréfice RL; de Oliveira AA; Pereira Mde M Mater Sci Eng C Mater Biol Appl; 2015; 52():22-30. PubMed ID: 25953536 [TBL] [Abstract][Full Text] [Related]
12. Preparation and Characterization of Body-Temperature-Responsive Thermoset Shape Memory Polyurethane for Medical Applications. Yang X; Han Z; Jia C; Wang T; Wang X; Hu F; Zhang H; Zhao J; Zhang X Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571087 [TBL] [Abstract][Full Text] [Related]
13. Novel anti-biofouling and drug releasing materials for contact lenses. Ogawa H; Nakaji-Hirabayashi T; Matsumura K; Yoshikawa C; Kitano H; Saruwatari Y Colloids Surf B Biointerfaces; 2020 May; 189():110859. PubMed ID: 32086022 [TBL] [Abstract][Full Text] [Related]
14. In vitro interaction of human fibroblasts and platelets with a shape-memory polyurethane. Farè S; Valtulina V; Petrini P; Alessandrini E; Pietrocola G; Tanzi MC; Speziale P; Visai L J Biomed Mater Res A; 2005 Apr; 73(1):1-11. PubMed ID: 15704114 [TBL] [Abstract][Full Text] [Related]
15. Physicochemical characterisation and biological evaluation of hydrogel-poly(epsilon-caprolactone) interpenetrating polymer networks as novel urinary biomaterials. Jones DS; McLaughlin DW; McCoy CP; Gorman SP Biomaterials; 2005 May; 26(14):1761-70. PubMed ID: 15576150 [TBL] [Abstract][Full Text] [Related]
16. Enhanced biocompatibility of polyurethane-type shape memory polymers modified by plasma immersion ion implantation treatment and collagen coating: An in vivo study. Cheng X; Fei J; Kondyurin A; Fu K; Ye L; Bilek MMM; Bao S Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():863-874. PubMed ID: 30889761 [TBL] [Abstract][Full Text] [Related]
17. Artificial extracellular matrix for biomedical applications: biocompatible and biodegradable poly (tetramethylene ether) glycol/poly (ε-caprolactone diol)-based polyurethanes. Shahrousvand M; Mir Mohamad Sadeghi G; Salimi A J Biomater Sci Polym Ed; 2016 Dec; 27(17):1712-1728. PubMed ID: 27589493 [TBL] [Abstract][Full Text] [Related]
18. The Effect of 4-Octyldecyloxybenzoic Acid on Liquid-Crystalline Polyurethane Composites with Triple-Shape Memory and Self-Healing Properties. Ban J; Zhu L; Chen S; Wang Y Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773914 [TBL] [Abstract][Full Text] [Related]
19. Zwitterionic modification of polyurethane membranes for enhancing the anti-fouling property. Liu P; Huang T; Liu P; Shi S; Chen Q; Li L; Shen J J Colloid Interface Sci; 2016 Oct; 480():91-101. PubMed ID: 27416290 [TBL] [Abstract][Full Text] [Related]
20. Shape Memory Properties and Enzymatic Degradability of Poly(ε-caprolactone)-Based Polyurethane Urea Containing Phenylalanine-Derived Chain Extender. Wang R; Zhang F; Lin W; Liu W; Li J; Luo F; Wang Y; Tan H Macromol Biosci; 2018 Jun; 18(6):e1800054. PubMed ID: 29687605 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]