These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 32263614)

  • 21. Deformation regimes of collagen fibrils in cortical bone revealed by in situ morphology and elastic modulus observations under mechanical loading.
    Yang PF; Nie XT; Zhao DD; Wang Z; Ren L; Xu HY; Rittweger J; Shang P
    J Mech Behav Biomed Mater; 2018 Mar; 79():115-121. PubMed ID: 29291465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bone nodules on chitosan-polygalacturonic acid-hydroxyapatite nanocomposite films mimic hierarchy of natural bone.
    Khanna R; Katti KS; Katti DR
    Acta Biomater; 2011 Mar; 7(3):1173-83. PubMed ID: 21034863
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nucleation and growth of apatite by a self-assembled polycrystalline bioceramic.
    Karlinsey RL; Yi K; Duhn CW
    Bioinspir Biomim; 2006 Mar; 1(1):12-9. PubMed ID: 17671300
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro apatite induction by phosphophoryn immobilized on modified collagen fibrils.
    Saito T; Yamauchi M; Abiko Y; Matsuda K; Crenshaw MA
    J Bone Miner Res; 2000 Aug; 15(8):1615-9. PubMed ID: 10934661
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of ion hydration on nucleation and growth of LiF crystals in aqueous solution.
    Lanaro G; Patey GN
    J Chem Phys; 2018 Jan; 148(2):024507. PubMed ID: 29331123
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Elastic properties of collagen in bone determined by measuring the Debye-Waller factor.
    Sasaki N; Shirakawa H; Nozoe T; Furusawa K
    J Biomech; 2013 Nov; 46(16):2824-30. PubMed ID: 24090493
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro apatite induction by osteopontin: interfacial energy for hydroxyapatite nucleation on osteopontin.
    Ito S; Saito T; Amano K
    J Biomed Mater Res A; 2004 Apr; 69(1):11-6. PubMed ID: 14999746
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Early Alterations in Bone Characteristics of Type I Diabetic Rat Femur: A Fourier Transform Infrared (FT-IR) Imaging Study.
    Bozkurt O; Bilgin MD; Evis Z; Pleshko N; Severcan F
    Appl Spectrosc; 2016 Dec; 70(12):2005-2015. PubMed ID: 27680083
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Finite element 3D modeling of mechanical behavior of mineralized collagen microfibrils.
    Barkaoui A; Hambli R
    J Appl Biomater Biomech; 2011; 9(3):199-205. PubMed ID: 22139755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular dynamics simulations of the mechanical properties of monoclinic hydroxyapatite.
    Ou X; Han Q
    J Mol Model; 2014 Nov; 20(11):2505. PubMed ID: 25352517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mineralization of DNA into nanoparticles of hydroxyapatite.
    Bertran O; del Valle LJ; Revilla-López G; Chaves G; Cardús L; Casas MT; Casanovas J; Turon P; Puiggalí J; Alemán C
    Dalton Trans; 2014 Jan; 43(1):317-27. PubMed ID: 24105025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational study of packing a collagen-like molecule: quasi-hexagonal vs "Smith" collagen microfibril model.
    Lee J; Scheraga HA; Rackovsky S
    Biopolymers; 1996; 40(6):595-607. PubMed ID: 9140199
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of fibronectin during biological apatite crystal nucleation: ultrastructural characterization.
    Daculsi G; Pilet P; Cottrel M; Guicheux G
    J Biomed Mater Res; 1999 Nov; 47(2):228-33. PubMed ID: 10449634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nature-derived epigallocatechin gallate/duck's feet collagen/hydroxyapatite composite sponges for enhanced bone tissue regeneration.
    Kook YJ; Tian J; Jeon YS; Choi MJ; Song JE; Park CH; Reis RL; Khang G
    J Biomater Sci Polym Ed; 2018; 29(7-9):984-996. PubMed ID: 29207926
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of the amorphous phase on the biomimetic mineralization of collagen.
    Nudelman F; Bomans PH; George A; de With G; Sommerdijk NA
    Faraday Discuss; 2012; 159():357-370. PubMed ID: 25383016
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation and characterization of microspheres comprised of collagen, chondroitin sulfate, and apatite as carriers for the osteoblast-like cell MG63.
    Tsai SW; Chen CC; Liou HM; Hsu FY
    J Biomed Mater Res A; 2010 Apr; 93(1):115-22. PubMed ID: 19536833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of dentin non-collagenous structures results in the unraveling of microfibril bundles in collagen type I.
    Bertassoni LE; Swain MV
    Connect Tissue Res; 2017 Sep; 58(5):414-423. PubMed ID: 27657550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Apatite induction by insoluble dentin collagen.
    Saito T; Yamauchi M; Crenshaw MA
    J Bone Miner Res; 1998 Feb; 13(2):265-70. PubMed ID: 9495520
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bone formation under the influence of bone morphogenetic protein/self-setting apatite cement composite as a delivery system.
    Kamegai A; Shimamura N; Naitou K; Nagahara K; Kanematsu N; Mori M
    Biomed Mater Eng; 1994; 4(4):291-307. PubMed ID: 7950877
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of X-ray radiation on the mineral/organic matrix interaction of bone tissue: an FT-IR microscopic investigation.
    Hübner W; Blume A; Pushnjakova R; Dekhtyar Y; Hein HJ
    Int J Artif Organs; 2005 Jan; 28(1):66-73. PubMed ID: 15742312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.