These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 32263621)
1. A thermally and water activated shape memory gelatin physical hydrogel, with a gel point above the physiological temperature, for biomedical applications. Zamani Alavijeh R; Shokrollahi P; Barzin J J Mater Chem B; 2017 Mar; 5(12):2302-2314. PubMed ID: 32263621 [TBL] [Abstract][Full Text] [Related]
2. Impact of supramolecular interactions on delivery of dexamethasone from a physical network of gelatin/ZnHAp composite scaffold. Mohseni M; Shokrollahi P; Barzin J Int J Pharm; 2022 Mar; 615():121520. PubMed ID: 35101589 [TBL] [Abstract][Full Text] [Related]
3. Dexamethasone loaded injectable, self-healing hydrogel microspheresbased on UPy-functionalized Gelatin/ZnHAp physical network promotes bone regeneration. Mohseni M; Shokrollahi P; Shokrolahi F; Hosseini S; Taghiyar L; Kamali A Int J Pharm; 2022 Oct; 626():122196. PubMed ID: 36115467 [TBL] [Abstract][Full Text] [Related]
4. Self-healing gelatin-based shape memory hydrogels via quadruple hydrogen bonding and coordination crosslinking for controlled delivery of 5-fluorouracil. Xu Y; Yang H; Zhu H; Jiang L; Yang H J Biomater Sci Polym Ed; 2020 Apr; 31(6):712-728. PubMed ID: 31955653 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/Gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering. Saghebasl S; Davaran S; Rahbarghazi R; Montaseri A; Salehi R; Ramazani A J Biomater Sci Polym Ed; 2018 Jul; 29(10):1185-1206. PubMed ID: 29490569 [TBL] [Abstract][Full Text] [Related]
6. Ultrafast and Programmable Shape Memory Hydrogel of Gelatin Soaked in Tannic Acid Solution. Yang S; Zhang Y; Wang T; Sun W; Tong Z ACS Appl Mater Interfaces; 2020 Oct; 12(41):46701-46709. PubMed ID: 32960035 [TBL] [Abstract][Full Text] [Related]
7. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677 [TBL] [Abstract][Full Text] [Related]
8. Thermally-Induced Shape-Memory Behavior of Degradable Gelatin-Based Networks. Neffe AT; Löwenberg C; Julich-Gruner KK; Behl M; Lendlein A Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072689 [TBL] [Abstract][Full Text] [Related]
9. Self-Healing Gelatin Hydrogels Cross-Linked by Combining Multiple Hydrogen Bonding and Ionic Coordination. Zhang G; Lv L; Deng Y; Wang C Macromol Rapid Commun; 2017 Jun; 38(12):. PubMed ID: 28481407 [TBL] [Abstract][Full Text] [Related]
10. A UV-cured nanofibrous membrane of vinylbenzylated gelatin-poly(ɛ-caprolactone) dimethacrylate co-network by scalable free surface electrospinning. Bazbouz MB; Liang H; Tronci G Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():541-555. PubMed ID: 30033285 [TBL] [Abstract][Full Text] [Related]
11. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics. Chen FM; Zhao YM; Sun HH; Jin T; Wang QT; Zhou W; Wu ZF; Jin Y J Control Release; 2007 Mar; 118(1):65-77. PubMed ID: 17250921 [TBL] [Abstract][Full Text] [Related]
12. Influence of decavanadate clusters on the rheological properties of gelatin. Carn F; Djabourov M; Coradin T; Livage J; Steunou N J Phys Chem B; 2008 Oct; 112(40):12596-605. PubMed ID: 18795771 [TBL] [Abstract][Full Text] [Related]
13. Preparation and evaluation of hydrogel-composites from methacrylated hyaluronic acid, alginate, and gelatin for tissue engineering. Möller L; Krause A; Dahlmann J; Gruh I; Kirschning A; Dräger G Int J Artif Organs; 2011 Feb; 34(2):93-102. PubMed ID: 21374568 [TBL] [Abstract][Full Text] [Related]
15. NIR-Triggered Rapid Shape Memory PAM-GO-Gelatin Hydrogels with High Mechanical Strength. Huang J; Zhao L; Wang T; Sun W; Tong Z ACS Appl Mater Interfaces; 2016 May; 8(19):12384-92. PubMed ID: 27116394 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of alginate-gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. Sarker B; Papageorgiou DG; Silva R; Zehnder T; Gul-E-Noor F; Bertmer M; Kaschta J; Chrissafis K; Detsch R; Boccaccini AR J Mater Chem B; 2014 Mar; 2(11):1470-1482. PubMed ID: 32261366 [TBL] [Abstract][Full Text] [Related]
17. Effect of binder additives on terbutaline hydrogels of alpha-PVA/NaCl/H(2)O system in drug delivery: I. Effect of gelatin and soluble starch. Shaheen SM; Takezoe K; Yamaura K Biomed Mater Eng; 2004; 14(4):371-82. PubMed ID: 15472386 [TBL] [Abstract][Full Text] [Related]
18. Assessment of multicomponent hydrogel scaffolds of poly(acrylic acid-2-hydroxy ethyl methacrylate)/gelatin for tissue engineering applications. Jaiswal M; Koul V J Biomater Appl; 2013 Mar; 27(7):848-61. PubMed ID: 22207603 [TBL] [Abstract][Full Text] [Related]
19. Thermosensitive chitosan-gelatin-glycerol phosphate hydrogels as a cell carrier for nucleus pulposus regeneration: an in vitro study. Cheng YH; Yang SH; Su WY; Chen YC; Yang KC; Cheng WT; Wu SC; Lin FH Tissue Eng Part A; 2010 Feb; 16(2):695-703. PubMed ID: 19769528 [TBL] [Abstract][Full Text] [Related]
20. Development of a hybrid gelatin hydrogel platform for tissue engineering and protein delivery applications. Sun X; Zhao X; Zhao L; Li Q; D'Ortenzio M; Nguyen B; Xu X; Wen Y J Mater Chem B; 2015 Aug; 3(30):6368-6376. PubMed ID: 32262755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]