These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 32263811)

  • 1. Photosensitizer-complexed polypyrrole nanoparticles for activatable fluorescence imaging and photodynamic therapy.
    Park D; Kim J; Choi Y
    J Mater Chem B; 2016 Dec; 4(47):7545-7548. PubMed ID: 32263811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosensitizer-conjugated polymeric nanoparticles for redox-responsive fluorescence imaging and photodynamic therapy.
    Kim H; Mun S; Choi Y
    J Mater Chem B; 2013 Jan; 1(4):429-431. PubMed ID: 32260811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indocyanine green-loaded hollow mesoporous silica nanoparticles as an activatable theranostic agent.
    Hong SH; Kim H; Choi Y
    Nanotechnology; 2017 May; 28(18):185102. PubMed ID: 28393763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-Triggered Polypeptides Nanoparticles for Efficient BODIPY Imaging-Guided Near Infrared Photodynamic Therapy.
    Liu L; Fu L; Jing T; Ruan Z; Yan L
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):8980-90. PubMed ID: 27020730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pH-activatable and aniline-substituted photosensitizer for near-infrared cancer theranostics.
    Tian J; Zhou J; Shen Z; Ding L; Yu JS; Ju H
    Chem Sci; 2015 Oct; 6(10):5969-5977. PubMed ID: 28791094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activatable albumin-photosensitizer nanoassemblies for triple-modal imaging and thermal-modulated photodynamic therapy of cancer.
    Hu D; Sheng Z; Gao G; Siu F; Liu C; Wan Q; Gong P; Zheng H; Ma Y; Cai L
    Biomaterials; 2016 Jul; 93():10-19. PubMed ID: 27061266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction and Evaluation of a Targeted Hyaluronic Acid Nanoparticle/Photosensitizer Complex for Cancer Photodynamic Therapy.
    Gao S; Wang J; Tian R; Wang G; Zhang L; Li Y; Li L; Ma Q; Zhu L
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):32509-32519. PubMed ID: 28875691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fucoidan-Based Theranostic Nanogel for Enhancing Imaging and Photodynamic Therapy of Cancer.
    Cho MH; Li Y; Lo PC; Lee H; Choi Y
    Nanomicro Lett; 2020 Feb; 12(1):47. PubMed ID: 34138253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific light-up pullulan-based nanoparticles with reduction-triggered emission and activatable photoactivity for the imaging and photodynamic killing of cancer cells.
    Xia J; Zhang L; Qian M; Bao Y; Wang J; Li Y
    J Colloid Interface Sci; 2017 Jul; 498():170-181. PubMed ID: 28324723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide activatable photosensitizer accompanying extremely elevated two-photon absorption for efficient fluorescence imaging and photodynamic therapy.
    Hu W; Xie M; Zhao H; Tang Y; Yao S; He T; Ye C; Wang Q; Lu X; Huang W; Fan Q
    Chem Sci; 2018 Jan; 9(4):999-1005. PubMed ID: 29629167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-photon photodynamic therapy.
    Bhawalkar JD; Kumar ND; Zhao CF; Prasad PN
    J Clin Laser Med Surg; 1997; 15(5):201-4. PubMed ID: 9612170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen Self-Sufficient Amphiphilic Polypeptide Nanoparticles Encapsulating BODIPY for Potential Near Infrared Imaging-guided Photodynamic Therapy at Low Energy.
    Liu L; Ruan Z; Yuan P; Li T; Yan L
    Nanotheranostics; 2018; 2(1):59-69. PubMed ID: 29291163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen-generating hybrid nanoparticles to enhance fluorescent/photoacoustic/ultrasound imaging guided tumor photodynamic therapy.
    Gao S; Wang G; Qin Z; Wang X; Zhao G; Ma Q; Zhu L
    Biomaterials; 2017 Jan; 112():324-335. PubMed ID: 27776285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-specific and pH-activatable rubyrin-loaded nanoparticles for highly selective near-infrared photodynamic therapy against cancer.
    Tian J; Ding L; Xu HJ; Shen Z; Ju H; Jia L; Bao L; Yu JS
    J Am Chem Soc; 2013 Dec; 135(50):18850-8. PubMed ID: 24294991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosensitizer-Conjugated Albumin-Polypyrrole Nanoparticles for Imaging-Guided In Vivo Photodynamic/Photothermal Therapy.
    Song X; Liang C; Gong H; Chen Q; Wang C; Liu Z
    Small; 2015 Aug; 11(32):3932-41. PubMed ID: 25925790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Fluorescence Imaging and Photodynamic Cancer Therapy Using Hollow Mesoporous Nanocontainers.
    Hong SH; Kim H; Choi Y
    Chem Asian J; 2017 Jul; 12(14):1700-1703. PubMed ID: 28463441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cucurbit[8]uril Regulated Activatable Supramolecular Photosensitizer for Targeted Cancer Imaging and Photodynamic Therapy.
    Wang XQ; Lei Q; Zhu JY; Wang WJ; Cheng Q; Gao F; Sun YX; Zhang XZ
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):22892-9. PubMed ID: 27513690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosensitizer-conjugated tryptophan-containing peptide ligands as new dual-targeted theranostics for cancers.
    Kim J; Chae J; Kim JS; Goh SH; Choi Y
    Int J Pharm; 2016 Nov; 513(1-2):584-590. PubMed ID: 27686051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-Responsive Dimeric Zinc(II) Phthalocyanine in Mesoporous Silica Nanoparticles as an Activatable Nanophotosensitizing System for Photodynamic Therapy.
    Wong RCH; Chow SYS; Zhao S; Fong WP; Ng DKP; Lo PC
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23487-23496. PubMed ID: 28661122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FRET quenching of photosensitizer singlet oxygen generation.
    Lovell JF; Chen J; Jarvi MT; Cao WG; Allen AD; Liu Y; Tidwell TT; Wilson BC; Zheng G
    J Phys Chem B; 2009 Mar; 113(10):3203-11. PubMed ID: 19708269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.