BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 32263965)

  • 1. Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy.
    Hemmer E; Acosta-Mora P; Méndez-Ramos J; Fischer S
    J Mater Chem B; 2017 Jun; 5(23):4365-4392. PubMed ID: 32263965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging.
    Hemmer E; Venkatachalam N; Hyodo H; Hattori A; Ebina Y; Kishimoto H; Soga K
    Nanoscale; 2013 Dec; 5(23):11339-61. PubMed ID: 23938606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm.
    Hemmer E; Benayas A; Légaré F; Vetrone F
    Nanoscale Horiz; 2016 May; 1(3):168-184. PubMed ID: 32260620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics.
    Sun SK; Wang HF; Yan XP
    Acc Chem Res; 2018 May; 51(5):1131-1143. PubMed ID: 29664602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanophotonics and nanochemistry: controlling the excitation dynamics for frequency up- and down-conversion in lanthanide-doped nanoparticles.
    Chen G; Yang C; Prasad PN
    Acc Chem Res; 2013 Jul; 46(7):1474-86. PubMed ID: 23339661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lanthanide nanoparticles with efficient near-infrared-II emission for biological applications.
    Ge X; Wei R; Sun L
    J Mater Chem B; 2020 Dec; 8(45):10257-10270. PubMed ID: 33084729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upconversion rare Earths nanomaterials applied to photodynamic therapy and bioimaging.
    Rezende TKL; Barbosa HP; Dos Santos LF; de O Lima K; Alves de Matos P; Tsubone TM; Gonçalves RR; Ferrari JL
    Front Chem; 2022; 10():1035449. PubMed ID: 36465861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lanthanide-based nanomaterials for temperature sensing in the near-infrared spectral region: illuminating progress and challenges.
    Puccini A; Liu N; Hemmer E
    Nanoscale; 2024 Jun; 16(23):10975-10993. PubMed ID: 38607258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 980 nm laser-activated upconverted persistent probe for NIR-to-NIR rechargeable in vivo bioimaging.
    Xue Z; Li X; Li Y; Jiang M; Ren G; Liu H; Zeng S; Hao J
    Nanoscale; 2017 Jun; 9(21):7276-7283. PubMed ID: 28524926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perspectives for Upconverting Nanoparticles.
    Wilhelm S
    ACS Nano; 2017 Nov; 11(11):10644-10653. PubMed ID: 29068198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-IR responsive nanostructures for nanobiophotonics: emerging impacts on nanomedicine.
    Song J; Qu J; Swihart MT; Prasad PN
    Nanomedicine; 2016 Apr; 12(3):771-788. PubMed ID: 26656629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small and Bright Lithium-Based Upconverting Nanoparticles.
    Cheng T; Marin R; Skripka A; Vetrone F
    J Am Chem Soc; 2018 Oct; 140(40):12890-12899. PubMed ID: 30215515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-Infrared-Sensitive Materials Based on Upconverting Nanoparticles.
    Wu S; Butt HJ
    Adv Mater; 2016 Feb; 28(6):1208-26. PubMed ID: 26389516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances of near infrared inorganic fluorescent probes for biomedical applications.
    Yang F; Zhang Q; Huang S; Ma D
    J Mater Chem B; 2020 Sep; 8(35):7856-7879. PubMed ID: 32749426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-Infrared Photoinduced Reactions Assisted by Upconverting Nanoparticles.
    Wu S; Blinco JP; Barner-Kowollik C
    Chemistry; 2017 Jun; 23(35):8325-8332. PubMed ID: 28294437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging NIR light-responsive delivery systems based on lanthanide-doped upconverting nanoparticles.
    Le XT; Youn YS
    Arch Pharm Res; 2020 Jan; 43(1):134-152. PubMed ID: 31981073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in near infrared upconverting nanomaterials for targeted photodynamic therapy of cancer.
    Del Valle CA; Hirsch T; Marín MJ
    Methods Appl Fluoresc; 2022 May; 10(3):. PubMed ID: 35447614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled optical characteristics of lanthanide doped upconversion nanoparticles for emerging applications.
    Ge X; Liu J; Sun L
    Dalton Trans; 2017 Dec; 46(48):16729-16737. PubMed ID: 29125162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-infrared photochemistry at interfaces based on upconverting nanoparticles.
    Wu S; Butt HJ
    Phys Chem Chem Phys; 2017 Sep; 19(35):23585-23596. PubMed ID: 28480940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nd
    Dantelle G; Matulionyte M; Testemale D; Cantarano A; Ibanez A; Vetrone F
    Phys Chem Chem Phys; 2019 Jun; 21(21):11132-11141. PubMed ID: 31094386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.