These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 32264612)

  • 1. Decoupling dual-stimuli responses in patterned lamellar hydrogels as photonic sensors.
    Yue Y; Li X; Kurokawa T; Anamul Haque M; Gong JP
    J Mater Chem B; 2016 Jun; 4(23):4104-4109. PubMed ID: 32264612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing Responsive Photonic Crystal Patterns by Using Laser Engraving.
    Yue Y; Kurokawa T
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):10841-10847. PubMed ID: 30810296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tough and Variable-Band-Gap Photonic Hydrogel Displaying Programmable Angle-Dependent Colors.
    Haque MA; Mito K; Kurokawa T; Nakajima T; Nonoyama T; Ilyas M; Gong JP
    ACS Omega; 2018 Jan; 3(1):55-62. PubMed ID: 31457878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flower-like Photonic Hydrogel with Superstructure Induced via Modulated Shear Field.
    Ye YN; Haque MA; Inoue A; Katsuyama Y; Kurokawa T; Gong JP
    ACS Macro Lett; 2021 Jun; 10(6):708-713. PubMed ID: 35549109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the stop bands of inverse opal hydrogels with double network structure by controlling the solvent and pH.
    Wang J; Han Y
    J Colloid Interface Sci; 2011 Jan; 353(2):498-505. PubMed ID: 20974475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lamellar hydrogels with high toughness and ternary tunable photonic stop-band.
    Yue YF; Haque MA; Kurokawa T; Nakajima T; Gong JP
    Adv Mater; 2013 Jun; 25(22):3106-10. PubMed ID: 23637012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanochitin/metal ion dual reinforcement in synthetic polyacrylamide network-based nanocomposite hydrogels.
    Li D; Gao H; Li M; Chen G; Guan L; He M; Tian J; Cao R
    Carbohydr Polym; 2020 May; 236():116061. PubMed ID: 32172876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removable interpenetrating network enables highly-responsive 2-D photonic crystal hydrogel sensors.
    Coukouma AE; Smith NL; Asher SA
    Analyst; 2015 Oct; 140(19):6517-21. PubMed ID: 26325265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.
    Kahn JS; Hu Y; Willner I
    Acc Chem Res; 2017 Apr; 50(4):680-690. PubMed ID: 28248486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Optical Sensitivity in Thermoresponsive Photonic Crystal Hydrogels by Operating Near the Phase Transition.
    Jung S; MacConaghy KI; Kaar JL; Stoykovich MP
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27927-27935. PubMed ID: 28758737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responsive Photonic Hydrogel-Based Colorimetric Sensors for Detection of Aldehydes in Aqueous Solution.
    Jia X; Zhang T; Wang J; Wang K; Tan H; Hu Y; Zhang L; Zhu J
    Langmuir; 2018 Apr; 34(13):3987-3992. PubMed ID: 29534571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels.
    Yue Y; Kurokawa T; Haque MA; Nakajima T; Nonoyama T; Li X; Kajiwara I; Gong JP
    Nat Commun; 2014 Aug; 5():4659. PubMed ID: 25130669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-responsive hydrogel structures from patterned droplet networks.
    Downs FG; Lunn DJ; Booth MJ; Sauer JB; Ramsay WJ; Klemperer RG; Hawker CJ; Bayley H
    Nat Chem; 2020 Apr; 12(4):363-371. PubMed ID: 32221498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design Strategies of Stimuli-Responsive Supramolecular Hydrogels Relying on Structural Analyses and Cell-Mimicking Approaches.
    Shigemitsu H; Hamachi I
    Acc Chem Res; 2017 Apr; 50(4):740-750. PubMed ID: 28252940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible adsorption-desorption oscillations of nanoparticles on a patterned hydrogel surface induced by a pH oscillator in a closed chemical system.
    Kim JK; Kim KI; Basavaraja C; Rabai G; Huh DS
    J Phys Chem B; 2013 May; 117(20):6294-303. PubMed ID: 23621666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal and stress tension dual-responsive photonic crystal nanocomposite hydrogels.
    Yan D; Lu W; Qiu L; Meng Z; Qiao Y
    RSC Adv; 2019 Jul; 9(37):21202-21205. PubMed ID: 35521329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microcantilever sensing arrays from biodegradable, pH-responsive hydrogels.
    VanBlarcom DS; Peppas NA
    Biomed Microdevices; 2011 Oct; 13(5):829-36. PubMed ID: 21603961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic hydrogel sensors.
    Yetisen AK; Butt H; Volpatti LR; Pavlichenko I; Humar M; Kwok SJ; Koo H; Kim KS; Naydenova I; Khademhosseini A; Hahn SK; Yun SH
    Biotechnol Adv; 2016; 34(3):250-71. PubMed ID: 26485407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chameleon-Inspired Strain-Accommodating Smart Skin.
    Dong Y; Bazrafshan A; Pokutta A; Sulejmani F; Sun W; Combs JD; Clarke KC; Salaita K
    ACS Nano; 2019 Sep; 13(9):9918-9926. PubMed ID: 31507164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterned Photonic Array Based on an Intertwined Polymer Network Functionalized with a Nonenzymatic Moiety for the Visual Detection of Glucose.
    Munir S; Hussain S; Park SY
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37434-37441. PubMed ID: 31544450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.