These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 32264612)

  • 21. Engineering highly swellable dual-responsive protein-based injectable hydrogels: the effects of molecular structure and composition in vivo.
    Phan VHG; Thambi T; Kim BS; Huynh DP; Lee DS
    Biomater Sci; 2017 Oct; 5(11):2285-2294. PubMed ID: 29019478
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo imaging of the morphology and changes in pH along the gastrointestinal tract of Japanese medaka by photonic band-gap hydrogel microspheres.
    Du X; Lei NY; Hu P; Lei Z; Ong DH; Ge X; Zhang Z; Lam MH
    Anal Chim Acta; 2013 Jul; 787():193-202. PubMed ID: 23830439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanofiber-structured hydrogel yarns with pH-response capacity and cardiomyocyte-drivability for bio-microactuator application.
    Wu S; Duan B; Qin X; Butcher JT
    Acta Biomater; 2017 Sep; 60():144-153. PubMed ID: 28733255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Injectable, Dual Responsive, and Self-Healing Hydrogel Based on Oxidized Sodium Alginate and Hydrazide-Modified Poly(ethyleneglycol).
    Wang L; Zhou W; Wang Q; Xu C; Tang Q; Yang H
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29494526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-velocity super-lubrication of sodium-alginate/polyacrylamide ionic-covalent hybrid double-network hydrogels.
    Li X; Wu C; Yang Q; Long S; Wu C
    Soft Matter; 2015 Apr; 11(15):3022-33. PubMed ID: 25735912
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation.
    Jo H; Sim M; Kim S; Yang S; Yoo Y; Park JH; Yoon TH; Kim MG; Lee JY
    Acta Biomater; 2017 Jan; 48():100-109. PubMed ID: 27989919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering biologically extensible hydrogels using photolithographic printing.
    Mehta SM; Jin T; Stanciulescu I; Grande-Allen KJ
    Acta Biomater; 2018 Jul; 75():52-62. PubMed ID: 29803005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Radically new cellulose nanocomposite hydrogels: Temperature and pH responsive characters.
    Hebeish A; Farag S; Sharaf S; Shaheen TI
    Int J Biol Macromol; 2015 Nov; 81():356-61. PubMed ID: 26275463
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemically Responsive Hydrogel Deformation Mechanics: A Review.
    Fennell E; Huyghe JM
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31569433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facile fabrication of thermo/redox responsive hydrogels based on a dual crosslinked matrix for a smart on-off switch.
    Sun N; Sun P; Wu A; Qiao X; Lu F; Zheng L
    Soft Matter; 2018 May; 14(21):4327-4334. PubMed ID: 29761197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nature-Inspired Sequential Shape Transformation of Energy-Patterned Hydrogel Sheets.
    Fan W; Yin J; Yi C; Xia Y; Nie Z; Sui K
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4878-4886. PubMed ID: 31904933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of Hydrolyzed Polyacrylamide Hydrogel Stiffness on Podocyte Morphology, Phenotype, and Mechanical Properties.
    Abdallah M; Martin M; El Tahchi MR; Balme S; Faour WH; Varga B; Cloitre T; Páll O; Cuisinier FJG; Gergely C; Bassil MJ; Bechelany M
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32623-32632. PubMed ID: 31424195
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Broad-wavelength-range chemically tunable block-copolymer photonic gels.
    Kang Y; Walish JJ; Gorishnyy T; Thomas EL
    Nat Mater; 2007 Dec; 6(12):957-60. PubMed ID: 17952084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Soft mold-dry etch: a novel hydrogel patterning technique for biomedical applications.
    Lei M; Gu Y; Baldi A; Siegel R; Ziaie B
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():1983-6. PubMed ID: 17272105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Band gap control using electric field of photonic gel cells fabricated with block copolymer and hydrogel.
    Lee SN; Baek YB; Shin DM
    J Nanosci Nanotechnol; 2014 Aug; 14(8):6053-5. PubMed ID: 25936055
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A self-healing, robust adhesion, multiple stimuli-response hydrogel for flexible sensors.
    Zhu Y; Lin L; Chen Y; Song Y; Lu W; Guo Y
    Soft Matter; 2020 Mar; 16(9):2238-2248. PubMed ID: 32025677
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bio-inspired fabrication of stimuli-responsive photonic crystals with hierarchical structures and their applications.
    Lu T; Peng W; Zhu S; Zhang D
    Nanotechnology; 2016 Mar; 27(12):122001. PubMed ID: 26891477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Piezoresistive Hydrogel-Based Sensors for the Detection of Ammonia.
    Erfkamp J; Guenther M; Gerlach G
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30823557
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnetic assembly route to colloidal responsive photonic nanostructures.
    He L; Wang M; Ge J; Yin Y
    Acc Chem Res; 2012 Sep; 45(9):1431-40. PubMed ID: 22578015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-dimensional photonic crystal chemical and biomolecular sensors.
    Cai Z; Smith NL; Zhang JT; Asher SA
    Anal Chem; 2015; 87(10):5013-25. PubMed ID: 25867803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.