These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32264740)

  • 1. Tuna locomotion: a computational hydrodynamic analysis of finlet function.
    Wang J; Wainwright DK; Lindengren RE; Lauder GV; Dong H
    J R Soc Interface; 2020 Apr; 17(165):20190590. PubMed ID: 32264740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locomotion in scombrid fishes: morphology and kinematics of the finlets of the chub mackerel Scomber japonicus.
    Nauen JC; Lauder GV
    J Exp Biol; 2000 Aug; 203(Pt 15):2247-59. PubMed ID: 10887065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locomotion in scombrid fishes: visualization of flow around the caudal peduncle and finlets of the chub mackerel Scomber japonicus.
    Nauen JC; Lauder GV
    J Exp Biol; 2001 Jul; 204(Pt 13):2251-63. PubMed ID: 11507109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional analysis of finlet kinematics in the chub mackerel (Scomber japonicus).
    Nauen JC; Lauder GV
    Biol Bull; 2001 Feb; 200(1):9-19. PubMed ID: 11249216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunas as a high-performance fish platform for inspiring the next generation of autonomous underwater vehicles.
    Wainwright DK; Lauder GV
    Bioinspir Biomim; 2020 Mar; 15(3):035007. PubMed ID: 32053798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic interaction of dorsal fin and caudal fin in swimming tuna.
    Zhang JD; Sung HJ; Huang WX
    Bioinspir Biomim; 2022 Sep; 17(6):. PubMed ID: 35896094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fin-fin interactions during locomotion in a simplified biomimetic fish model.
    Matthews DG; Lauder GV
    Bioinspir Biomim; 2021 Sep; 16(4):. PubMed ID: 34015781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biomimetic fish finlet with a liquid metal soft sensor for proprioception and underwater sensing.
    Wenguang S; Gang W; Feiyang Y; Siqi W; Qiao Z; Kuang W; Pan F; Yu J; Li W
    Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34450601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic function of dorsal fins in spiny dogfish and bamboo sharks during steady swimming.
    Maia A; Lauder GV; Wilga CD
    J Exp Biol; 2017 Nov; 220(Pt 21):3967-3975. PubMed ID: 28883085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.
    Li N; Liu H; Su Y
    PLoS One; 2017; 12(3):e0174740. PubMed ID: 28362836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control surfaces of aquatic vertebrates: active and passive design and function.
    Fish FE; Lauder GV
    J Exp Biol; 2017 Dec; 220(Pt 23):4351-4363. PubMed ID: 29187618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New approaches for assessing squid fin motions: coupling proper orthogonal decomposition with volumetric particle tracking velocimetry.
    Bartol IK; Krueger PS; York CA; Thompson JT
    J Exp Biol; 2018 Jul; 221(Pt 14):. PubMed ID: 29789404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance variation due to stiffness in a tuna-inspired flexible foil model.
    Rosic MN; Thornycroft PJ; Feilich KL; Lucas KN; Lauder GV
    Bioinspir Biomim; 2017 Jan; 12(1):016011. PubMed ID: 28094239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional morphology and hydrodynamics of backward swimming in bluegill sunfish, Lepomis macrochirus.
    Flammang BE; Lauder GV
    Zoology (Jena); 2016 Oct; 119(5):414-420. PubMed ID: 27291816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locomotor function of the dorsal fin in rainbow trout: kinematic patterns and hydrodynamic forces.
    Drucker EG; Lauder GV
    J Exp Biol; 2005 Dec; 208(Pt 23):4479-94. PubMed ID: 16339868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamics of caudal fin locomotion by chub mackerel, Scomber japonicus (Scombridae).
    Nauen JC; Lauder GV
    J Exp Biol; 2002 Jun; 205(Pt 12):1709-24. PubMed ID: 12042330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simplified computational model of possible hydrodynamic interactions between respiratory and swimming-related water flows in labriform-swimming fishes.
    Leung DB; Eldredge JD; Gordon MS
    Bioinspir Biomim; 2021 Mar; 16(3):. PubMed ID: 33434901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Undulating fins produce off-axis thrust and flow structures.
    Neveln ID; Bale R; Bhalla AP; Curet OM; Patankar NA; MacIver MA
    J Exp Biol; 2014 Jan; 217(Pt 2):201-13. PubMed ID: 24072799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuna robotics: hydrodynamics of rapid linear accelerations.
    Thandiackal R; White CH; Bart-Smith H; Lauder GV
    Proc Biol Sci; 2021 Feb; 288(1945):20202726. PubMed ID: 33593180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish.
    Drucker EG; Lauder GV
    J Exp Biol; 2001 Sep; 204(Pt 17):2943-58. PubMed ID: 11551984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.