These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32264740)

  • 21. Passive mechanical models of fish caudal fins: effects of shape and stiffness on self-propulsion.
    Feilich KL; Lauder GV
    Bioinspir Biomim; 2015 Apr; 10(3):036002. PubMed ID: 25879846
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theoretical and numerical studies on a five-ray flexible pectoral fin during labriform swimming.
    Weng J; Zhu Y; Du X; Yang G; Hu D
    Bioinspir Biomim; 2019 Dec; 15(1):016007. PubMed ID: 31694000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Convergence of undulatory swimming kinematics across a diversity of fishes.
    Di Santo V; Goerig E; Wainwright DK; Akanyeti O; Liao JC; Castro-Santos T; Lauder GV
    Proc Natl Acad Sci U S A; 2021 Dec; 118(49):. PubMed ID: 34853171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disentangling the functional roles of morphology and motion in the swimming of fish.
    Tytell ED; Borazjani I; Sotiropoulos F; Baker TV; Anderson EJ; Lauder GV
    Integr Comp Biol; 2010 Dec; 50(6):1140-54. PubMed ID: 21082068
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrodynamics of a Flexible Soft-Rayed Caudal Fin.
    Iosilevskii G
    PLoS One; 2016; 11(10):e0163517. PubMed ID: 27695043
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional kinematics and wake structure of the pectoral fins during locomotion in leopard sharks Triakis semifasciata.
    Wilga CD; Lauder GV
    J Exp Biol; 2000 Aug; 203(Pt 15):2261-78. PubMed ID: 10887066
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thrust generation and propulsive efficiency in dolphin-like swimming propulsion.
    Guo J; Zhang W; Han P; Fish FE; Dong H
    Bioinspir Biomim; 2023 Jul; 18(5):. PubMed ID: 37414002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluid dynamics of flapping aquatic flight in the bird wrasse: three-dimensional unsteady computations with fin deformation.
    Ramamurti R; Sandberg WC; Löhner R; Walker JA; Westneat MW
    J Exp Biol; 2002 Oct; 205(Pt 19):2997-3008. PubMed ID: 12200403
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Locomotion in sturgeon: function of the pectoral fins.
    Wilga CD; Lauder GV
    J Exp Biol; 1999; 202(Pt 18):2413-2432. PubMed ID: 10460730
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Swimming performance studies on the eastern Pacific bonito Sarda chiliensis, a close relative of the tunas (family Scombridae) II. Kinematics.
    Dowis HJ; Sepulveda CA; Graham JB; Dickson KA
    J Exp Biol; 2003 Aug; 206(Pt 16):2749-58. PubMed ID: 12847120
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study of flexible fin and compliant joint stiffness on propulsive performance: theory and experiments.
    Kancharala AK; Philen MK
    Bioinspir Biomim; 2014 Sep; 9(3):036011. PubMed ID: 24737004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A hydrodynamic analysis of fish swimming speed: wake structure and locomotor force in slow and fast labriform swimmers.
    Drucker EG; Lauder GV
    J Exp Biol; 2000 Aug; 203(Pt 16):2379-93. PubMed ID: 10903153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fish robotics: multi-fin propulsion and the coupling of fin phase, spacing, and compliance.
    Mignano AP; Kadapa S; Drago AC; Lauder GV; Kwatny HG; Tangorra JL
    Bioinspir Biomim; 2024 Jan; 19(2):. PubMed ID: 38211345
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydraulic control of tuna fins: A role for the lymphatic system in vertebrate locomotion.
    Pavlov V; Rosental B; Hansen NF; Beers JM; Parish G; Rowbotham I; Block BA
    Science; 2017 Jul; 357(6348):310-314. PubMed ID: 28729512
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of biorobotic models of highly deformable fins for studying the mechanics and control of fin forces in fishes.
    Tangorra J; Phelan C; Esposito C; Lauder G
    Integr Comp Biol; 2011 Jul; 51(1):176-89. PubMed ID: 21653544
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved swimming performance in schooling fish via leading-edge vortex enhancement.
    Seo JH; Mittal R
    Bioinspir Biomim; 2022 Nov; 17(6):. PubMed ID: 36261046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrodynamics and energy-saving swimming techniques of Pacific bluefin tuna.
    Takagi T; Tamura Y; Weihs D
    J Theor Biol; 2013 Nov; 336():158-72. PubMed ID: 23907027
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bio-Inspired Propulsion: Towards Understanding the Role of Pectoral Fin Kinematics in Manta-like Swimming.
    Menzer A; Gong Y; Fish FE; Dong H
    Biomimetics (Basel); 2022 Apr; 7(2):. PubMed ID: 35466262
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Force scaling and efficiency of elongated median fin propulsion.
    Uddin MI; Garcia GA; Curet OM
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35366647
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Function of pectoral fins in rainbow trout: behavioral repertoire and hydrodynamic forces.
    Drucker EG; Lauder GV
    J Exp Biol; 2003 Mar; 206(Pt 5):813-26. PubMed ID: 12547936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.