BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32264772)

  • 21. The relationship between dopamine D2 receptor occupancy and the vacuous chewing movement syndrome in rats.
    Turrone P; Remington G; Kapur S; Nobrega JN
    Psychopharmacology (Berl); 2003 Jan; 165(2):166-71. PubMed ID: 12417967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carvedilol attenuates neuroleptic-induced orofacial dyskinesia: possible antioxidant mechanisms.
    Naidu PS; Singh A; Kulkarni SK
    Br J Pharmacol; 2002 May; 136(2):193-200. PubMed ID: 12010767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An animal model to study the molecular basis of tardive dyskinesia.
    Bishnoi M; Boparai RK
    Methods Mol Biol; 2012; 829():193-201. PubMed ID: 22231815
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neuroleptic-induced vacuous chewing movements as an animal model of tardive dyskinesia: a study in three rat strains.
    Tamminga CA; Dale JM; Goodman L; Kaneda H; Kaneda N
    Psychopharmacology (Berl); 1990; 102(4):474-8. PubMed ID: 1982902
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential effects of antipsychotics on haloperidol-induced vacuous chewing movements and subcortical gene expression in the rat.
    McCullumsmith RE; Stincic TL; Agrawal SM; Meador-Woodruff JH
    Eur J Pharmacol; 2003 Sep; 477(2):101-12. PubMed ID: 14519413
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Possible antioxidant and neuroprotective mechanisms of FK506 in attenuating haloperidol-induced orofacial dyskinesia.
    Singh A; Naidu PS; Kulkarni SK
    Eur J Pharmacol; 2003 Sep; 477(2):87-94. PubMed ID: 14519411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nicotine reduces antipsychotic-induced orofacial dyskinesia in rats.
    Bordia T; McIntosh JM; Quik M
    J Pharmacol Exp Ther; 2012 Mar; 340(3):612-9. PubMed ID: 22144565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pro-Leu-glycinamide and its peptidomimetic, PAOPA, attenuate haloperidol induced vacuous chewing movements in rat: A model of human tardive dyskinesia.
    Sharma S; Paladino P; Gabriele J; Saeedi H; Henry P; Chang M; Mishra RK; Johnson RL
    Peptides; 2003 Feb; 24(2):313-9. PubMed ID: 12668218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulatory effect of neurosteroids in haloperidol-induced vacuous chewing movements and related behaviors.
    Bishnoi M; Chopra K; Kulkarni SK
    Psychopharmacology (Berl); 2008 Feb; 196(2):243-54. PubMed ID: 17955214
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ginkgo biloba and vitamin E ameliorate haloperidol-induced vacuous chewingmovement and brain-derived neurotrophic factor expression in a rat tardive dyskinesia model.
    Shi J; Tan YL; Wang ZR; An HM; Li J; Wang YC; Lv MH; Yan SX; Wu JQ; Soares JC; Yang FD; Zhang XY
    Pharmacol Biochem Behav; 2016 Sep; 148():53-8. PubMed ID: 27264436
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glycine and D-cycloserine attenuate vacuous chewing movements in a rat model of tardive dyskinesia.
    Shoham S; Mazeh H; Javitt DC; Heresco-Levy U
    Brain Res; 2004 Apr; 1004(1-2):142-7. PubMed ID: 15033429
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The vacuous chewing movement (VCM) model of tardive dyskinesia revisited: is there a relationship to dopamine D(2) receptor occupancy?
    Turrone P; Remington G; Nobrega JN
    Neurosci Biobehav Rev; 2002 May; 26(3):361-80. PubMed ID: 12034136
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidative stress and the antipsychotic-induced vacuous chewing movement model of tardive dyskinesia: evidence for antioxidant-based prevention strategies.
    Lister J; Nobrega JN; Fletcher PJ; Remington G
    Psychopharmacology (Berl); 2014 Jun; 231(11):2237-49. PubMed ID: 24752659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of alpha lipoic acid on the tardive dyskinesia and oxidative stress induced by haloperidol in rats.
    Thaakur S; Himabindhu G
    J Neural Transm (Vienna); 2009 Jul; 116(7):807-14. PubMed ID: 19444377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential effects of within-day continuous vs. transient dopamine D2 receptor occupancy in the development of vacuous chewing movements (VCMs) in rats.
    Turrone P; Remington G; Kapur S; Nobrega JN
    Neuropsychopharmacology; 2003 Aug; 28(8):1433-9. PubMed ID: 12838271
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antipsychotic-induced vacuous chewing movements and extrapyramidal side effects are highly heritable in mice.
    Crowley JJ; Adkins DE; Pratt AL; Quackenbush CR; van den Oord EJ; Moy SS; Wilhelmsen KC; Cooper TB; Bogue MA; McLeod HL; Sullivan PF
    Pharmacogenomics J; 2012 Apr; 12(2):147-55. PubMed ID: 21079646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Co-administration of progabide inhibits haloperidol-induced oral dyskinesias in rats.
    Kaneda H; Shirakawa O; Dale J; Goodman L; Bachus SE; Tamminga CA
    Eur J Pharmacol; 1992 Feb; 212(1):43-9. PubMed ID: 1555638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reversal of haloperidol-induced orofacial dyskinesia by quercetin, a bioflavonoid.
    Naidu PS; Singh A; Kulkarni SK
    Psychopharmacology (Berl); 2003 Jun; 167(4):418-23. PubMed ID: 12669184
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Autoradiographic mapping of mu opioid receptor changes in rat brain after long-term haloperidol treatment: relationship to the development of vacuous chewing movements.
    Sasaki T; Kennedy JL; Nobrega JN
    Psychopharmacology (Berl); 1996 Nov; 128(1):97-104. PubMed ID: 8944412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diphenyl diselenide decreases the prevalence of vacuous chewing movements induced by fluphenazine in rats.
    Fachinetto R; Villarinho JG; Wagner C; Pereira RP; Puntel RL; Paixão MW; Braga AL; Calixto JB; Rocha JB; Ferreira J
    Psychopharmacology (Berl); 2007 Oct; 194(3):423-32. PubMed ID: 17641876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.