These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32264909)

  • 61. Synonymous Dinucleotide Usage: A Codon-Aware Metric for Quantifying Dinucleotide Representation in Viruses.
    Lytras S; Hughes J
    Viruses; 2020 Apr; 12(4):. PubMed ID: 32325924
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Unlinking the methylome pattern from nucleotide sequence, revealed by large-scale in vivo genome engineering and methylome editing in medaka fish.
    Cheung NKM; Nakamura R; Uno A; Kumagai M; Fukushima HS; Morishita S; Takeda H
    PLoS Genet; 2017 Dec; 13(12):e1007123. PubMed ID: 29267279
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Intron length and accelerated 3' gene evolution.
    Tang CS; Zhao YZ; Smith DK; Epstein RJ
    Genomics; 2006 Dec; 88(6):682-689. PubMed ID: 16928427
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The vertebrate genome: isochores and evolution.
    Bernardi G
    Mol Biol Evol; 1993 Jan; 10(1):186-204. PubMed ID: 8450755
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Periodicity of eight nucleotides in purine distribution around human genomic CpG dinucleotides.
    Clay O; Schaffner W; Matsuo K
    Somat Cell Mol Genet; 1995 Mar; 21(2):91-8. PubMed ID: 7570188
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Conserved and divergent patterns of DNA methylation in higher vertebrates.
    Jiang N; Wang L; Chen J; Wang L; Leach L; Luo Z
    Genome Biol Evol; 2014 Oct; 6(11):2998-3014. PubMed ID: 25355807
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Evidence for erosion of mouse CpG islands during mammalian evolution.
    Matsuo K; Clay O; Takahashi T; Silke J; Schaffner W
    Somat Cell Mol Genet; 1993 Nov; 19(6):543-55. PubMed ID: 8128314
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Possible implications of CpG avoidance in the flatworm Schistosoma mansoni.
    Musto H; Rodríguez-Maseda H; Alvarez F; Tort J
    J Mol Evol; 1994 Jan; 38(1):36-40. PubMed ID: 8151713
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Prediction of methylated CpGs in DNA sequences using a support vector machine.
    Bhasin M; Zhang H; Reinherz EL; Reche PA
    FEBS Lett; 2005 Aug; 579(20):4302-8. PubMed ID: 16051225
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A functional investigation of the suppression of CpG and UpA dinucleotide frequencies in plant RNA virus genomes.
    Ibrahim A; Fros J; Bertran A; Sechan F; Odon V; Torrance L; Kormelink R; Simmonds P
    Sci Rep; 2019 Dec; 9(1):18359. PubMed ID: 31797900
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Evolutionary Transition of Promoter and Gene Body DNA Methylation across Invertebrate-Vertebrate Boundary.
    Keller TE; Han P; Yi SV
    Mol Biol Evol; 2016 Apr; 33(4):1019-28. PubMed ID: 26715626
    [TBL] [Abstract][Full Text] [Related]  

  • 72. In vitro methylation of CpG-rich islands.
    Carotti D; Palitti F; Lavia P; Strom R
    Nucleic Acids Res; 1989 Nov; 17(22):9219-29. PubMed ID: 2587255
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Dinucleotide Composition in Animal RNA Viruses Is Shaped More by Virus Family than by Host Species.
    Di Giallonardo F; Schlub TE; Shi M; Holmes EC
    J Virol; 2017 Apr; 91(8):. PubMed ID: 28148785
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Increasing the CpG dinucleotide abundance in the HIV-1 genomic RNA inhibits viral replication.
    Antzin-Anduetza I; Mahiet C; Granger LA; Odendall C; Swanson CM
    Retrovirology; 2017 Nov; 14(1):49. PubMed ID: 29121951
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Evolutionary conservation of DNA methylation in CpG sites within ultraconserved noncoding elements.
    Colwell M; Drown M; Showel K; Drown C; Palowski A; Faulk C
    Epigenetics; 2018; 13(1):49-60. PubMed ID: 29372669
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A nuclear protein that binds preferentially to methylated DNA in vitro may play a role in the inaccessibility of methylated CpGs in mammalian nuclei.
    Meehan R; Antequera F; Lewis J; MacLeod D; McKay S; Kleiner E; Bird AP
    Philos Trans R Soc Lond B Biol Sci; 1990 Jan; 326(1235):199-205. PubMed ID: 1968657
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Key features of cereal genome organization as revealed by the use of cytosine methylation-sensitive restriction endonucleases.
    Moore G; Abbo S; Cheung W; Foote T; Gale M; Koebner R; Leitch A; Leitch I; Money T; Stancombe P
    Genomics; 1993 Mar; 15(3):472-82. PubMed ID: 8468041
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Control of methylation spreading in synthetic DNA sequences by the murine DNA methyltransferase.
    Tollefsbol TO; Hutchison CA
    J Mol Biol; 1997 Jun; 269(4):494-504. PubMed ID: 9217255
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Predicting DNA Methylation State of CpG Dinucleotide Using Genome Topological Features and Deep Networks.
    Wang Y; Liu T; Xu D; Shi H; Zhang C; Mo YY; Wang Z
    Sci Rep; 2016 Jan; 6():19598. PubMed ID: 26797014
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Gene and transposable element methylation in great tit (Parus major) brain and blood.
    Derks MF; Schachtschneider KM; Madsen O; Schijlen E; Verhoeven KJ; van Oers K
    BMC Genomics; 2016 May; 17():332. PubMed ID: 27146629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.