These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 32265285)

  • 1. Hog1 activation delays mitotic exit via phosphorylation of Net1.
    Tognetti S; Jiménez J; Viganò M; Duch A; Queralt E; de Nadal E; Posas F
    Proc Natl Acad Sci U S A; 2020 Apr; 117(16):8924-8933. PubMed ID: 32265285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cdc14 Early Anaphase Release, FEAR, Is Limited to the Nucleus and Dispensable for Efficient Mitotic Exit.
    Yellman CM; Roeder GS
    PLoS One; 2015; 10(6):e0128604. PubMed ID: 26090959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nur1 dephosphorylation confers positive feedback to mitotic exit phosphatase activation in budding yeast.
    Godfrey M; Kuilman T; Uhlmann F
    PLoS Genet; 2015 Jan; 11(1):e1004907. PubMed ID: 25569132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The regulation of Net1/Cdc14 by the Hog1 MAPK upon osmostress unravels a new mechanism regulating mitosis.
    Jiménez J; Queralt E; Posas F; de Nadal E
    Cell Cycle; 2020 Sep; 19(17):2105-2118. PubMed ID: 32794416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Downregulation of PP2A(Cdc55) phosphatase by separase initiates mitotic exit in budding yeast.
    Queralt E; Lehane C; Novak B; Uhlmann F
    Cell; 2006 May; 125(4):719-32. PubMed ID: 16713564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation by cyclin B-Cdk underlies release of mitotic exit activator Cdc14 from the nucleolus.
    Azzam R; Chen SL; Shou W; Mah AS; Alexandru G; Nasmyth K; Annan RS; Carr SA; Deshaies RJ
    Science; 2004 Jul; 305(5683):516-9. PubMed ID: 15273393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Putting the brake on FEAR: Tof2 promotes the biphasic release of Cdc14 phosphatase during mitotic exit.
    Waples WG; Chahwan C; Ciechonska M; Lavoie BD
    Mol Biol Cell; 2009 Jan; 20(1):245-55. PubMed ID: 18923139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cdc14 activation requires coordinated Cdk1-dependent phosphorylation of Net1 and PP2A-Cdc55 at anaphase onset.
    Játiva S; Calabria I; Moyano-Rodriguez Y; Garcia P; Queralt E
    Cell Mol Life Sci; 2019 Sep; 76(18):3601-3620. PubMed ID: 30927017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nucleolus-localized activator of Cdc14 phosphatase supports rDNA segregation in yeast mitosis.
    Geil C; Schwab M; Seufert W
    Curr Biol; 2008 Jul; 18(13):1001-5. PubMed ID: 18595708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple telophase arrest bypassed (tab) mutants alleviate the essential requirement for Cdc15 in exit from mitosis in S. cerevisiae.
    Shou W; Deshaies RJ
    BMC Genet; 2002 Mar; 3():4. PubMed ID: 11914130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Budding yeast Cdc5 phosphorylates Net1 and assists Cdc14 release from the nucleolus.
    Yoshida S; Toh-e A
    Biochem Biophys Res Commun; 2002 Jun; 294(3):687-91. PubMed ID: 12056824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the polo kinase Cdc5 in controlling Cdc14 localization.
    Visintin R; Stegmeier F; Amon A
    Mol Biol Cell; 2003 Nov; 14(11):4486-98. PubMed ID: 14551257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cdc14 and condensin control the dissolution of cohesin-independent chromosome linkages at repeated DNA.
    D'Amours D; Stegmeier F; Amon A
    Cell; 2004 May; 117(4):455-69. PubMed ID: 15137939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Net1 stimulates RNA polymerase I transcription and regulates nucleolar structure independently of controlling mitotic exit.
    Shou W; Sakamoto KM; Keener J; Morimoto KW; Traverso EE; Azzam R; Hoppe GJ; Feldman RM; DeModena J; Moazed D; Charbonneau H; Nomura M; Deshaies RJ
    Mol Cell; 2001 Jul; 8(1):45-55. PubMed ID: 11511359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A New Methodology for the Quantification of In Vivo Cdc14 Phosphatase Activity.
    Queralt E; Rodriguez-Rodriguez JA
    Methods Mol Biol; 2017; 1505():89-96. PubMed ID: 27826859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The replication fork block protein Fob1 functions as a negative regulator of the FEAR network.
    Stegmeier F; Huang J; Rahal R; Zmolik J; Moazed D; Amon A
    Curr Biol; 2004 Mar; 14(6):467-80. PubMed ID: 15043811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of the Hog1 MAPK by the Ssk2/Ssk22 MAP3Ks, in the absence of the osmosensors, is not sufficient to trigger osmostress adaptation in Saccharomyces cerevisiae.
    Vázquez-Ibarra A; Subirana L; Ongay-Larios L; Kawasaki L; Rojas-Ortega E; Rodríguez-González M; de Nadal E; Posas F; Coria R
    FEBS J; 2018 Mar; 285(6):1079-1096. PubMed ID: 29341399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global analysis of Cdc14 phosphatase reveals diverse roles in mitotic processes.
    Bloom J; Cristea IM; Procko AL; Lubkov V; Chait BT; Snyder M; Cross FR
    J Biol Chem; 2011 Feb; 286(7):5434-45. PubMed ID: 21127052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The stress-activated protein kinase Hog1 mediates S phase delay in response to osmostress.
    Yaakov G; Duch A; García-Rubio M; Clotet J; Jimenez J; Aguilera A; Posas F
    Mol Biol Cell; 2009 Aug; 20(15):3572-82. PubMed ID: 19477922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-compartment signal propagation in the mitotic exit network.
    Zhou X; Li W; Liu Y; Amon A
    Elife; 2021 Jan; 10():. PubMed ID: 33481703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.