These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32265475)

  • 1. Linoleic acid induces metabolic stress in the intestinal microorganism Bifidobacterium breve DSM 20213.
    Senizza A; Rocchetti G; Callegari ML; Lucini L; Morelli L
    Sci Rep; 2020 Apr; 10(1):5997. PubMed ID: 32265475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linoleic Acid Triggered a Metabolomic Stress Condition in Three Species of Bifidobacteria Characterized by Different Conjugated Linoleic Acid-Producing Abilities.
    Mei Y; Chen H; Yang B; Zhao J; Zhang H; Chen W
    J Agric Food Chem; 2021 Sep; 69(38):11311-11321. PubMed ID: 34523917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Pufa Substrates on Fatty Acid Profile of Bifidobacterium breve Ncimb 702258 and CLA/CLNA Production in Commercial Semi-Skimmed Milk.
    Fontes AL; Pimentel L; Rodríguez-Alcalá LM; Gomes A
    Sci Rep; 2018 Oct; 8(1):15591. PubMed ID: 30349012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Linoleic Acid on Gut-Derived
    Senizza A; Callegari ML; Senizza B; Minuti A; Rocchetti G; Morelli L; Patrone V
    Microorganisms; 2019 Dec; 7(12):. PubMed ID: 31861103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bifidobacterium bifidum ATCC 15696 and Bifidobacterium breve 24b Metabolic Interaction Based on 2'-
    Centanni M; Ferguson SA; Sims IM; Biswas A; Tannock GW
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrative Metabolomic Characterization Reveals the Mediating Effect of
    Zhu G; Guo M; Zhao J; Zhang H; Wang G; Chen W
    Nutrients; 2022 Feb; 14(4):. PubMed ID: 35215385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of conjugated linoleic acid by human-derived Bifidobacterium breve LMC 017: utilization as a functional starter culture for milk fermentation.
    Chung SH; Kim IH; Park HG; Kang HS; Yoon CS; Jeong HY; Choi NJ; Kwon EG; Kim YJ
    J Agric Food Chem; 2008 May; 56(9):3311-6. PubMed ID: 18410112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of 10-hydroxy-cis-12-octadecenic acid in transforming linoleic acid into conjugated linoleic acid by bifidobacteria.
    Gao H; Yang B; Stanton C; Ross RP; Zhang H; Chen H; Chen W
    Appl Microbiol Biotechnol; 2019 Sep; 103(17):7151-7160. PubMed ID: 31250059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of biosynthetic oligosaccharides by human-derived Bifidobacterium breve UCC2003 and Bifidobacterium longum NCIMB 8809.
    Ruiz-Aceituno L; Esteban-Torres M; James K; Moreno FJ; van Sinderen D
    Int J Food Microbiol; 2020 Mar; 316():108476. PubMed ID: 31874325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of conjugated linoleic acid production by Bifidobacterium breve LMC 520.
    Park HG; Cho SD; Kim JH; Lee H; Chung SH; Kim SB; Kim HS; Kim T; Choi NJ; Kim YJ
    J Agric Food Chem; 2009 Aug; 57(16):7571-5. PubMed ID: 20349924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conjugated Linoleic Acid Production by Bifidobacteria: Screening, Kinetic, and Composition.
    Raimondi S; Amaretti A; Leonardi A; Quartieri A; Gozzoli C; Rossi M
    Biomed Res Int; 2016; 2016():8654317. PubMed ID: 27429985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Gene Homologous to rRNA Methylase Genes Confers Erythromycin and Clindamycin Resistance in Bifidobacterium breve.
    Martínez N; Luque R; Milani C; Ventura M; Bañuelos O; Margolles A
    Appl Environ Microbiol; 2018 May; 84(10):. PubMed ID: 29500262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conjugated linoleic and linolenic acid production kinetics by bifidobacteria differ among strains.
    Gorissen L; De Vuyst L; Raes K; De Smet S; Leroy F
    Int J Food Microbiol; 2012 Apr; 155(3):234-40. PubMed ID: 22405353
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Yao R; Wong CB; Nakamura K; Mitsuyama E; Tanaka A; Kuhara T; Odamaki T; Xiao JZ
    Benef Microbes; 2019 May; 10(5):521-531. PubMed ID: 31090459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bifidobacterium breve with α-linolenic acid alters the composition, distribution and transcription factor activity associated with metabolism and absorption of fat.
    Patterson E; Wall R; Lisai S; Ross RP; Dinan TG; Cryan JF; Fitzgerald GF; Banni S; Quigley EM; Shanahan F; Stanton C
    Sci Rep; 2017 Mar; 7():43300. PubMed ID: 28265110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two extracellular sialidases from Bifidobacterium bifidum promote the degradation of sialyl-oligosaccharides and support the growth of Bifidobacterium breve.
    Nishiyama K; Nagai A; Uribayashi K; Yamamoto Y; Mukai T; Okada N
    Anaerobe; 2018 Aug; 52():22-28. PubMed ID: 29787815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic Study of Utilization of Water-Insoluble Saccharomyces cerevisiae Glucans by Bifidobacterium breve Strain JCM1192.
    Keung HY; Li TK; Sham LT; Cheung MK; Cheung PCK; Kwan HS
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28115383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of conjugated linoleic acid and conjugated linolenic acid isomers by Bifidobacterium species.
    Gorissen L; Raes K; Weckx S; Dannenberger D; Leroy F; De Vuyst L; De Smet S
    Appl Microbiol Biotechnol; 2010 Aug; 87(6):2257-66. PubMed ID: 20556602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of a conjugated fatty acid by Bifidobacterium breve LMC520 from α-linolenic acid: conjugated linolenic acid (CLnA).
    Park HG; Cho HT; Song MC; Kim SB; Kwon EG; Choi NJ; Kim YJ
    J Agric Food Chem; 2012 Mar; 60(12):3204-10. PubMed ID: 22372442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of conjugated linoleic acid (CLA) by Bifidobacterium breve LMC520 and its compatibility with CLA-producing rumen bacteria.
    Park HG; Heo W; Kim SB; Kim HS; Bae GS; Chung SH; Seo HC; Kim YJ
    J Agric Food Chem; 2011 Feb; 59(3):984-8. PubMed ID: 21192703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.