These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 32265477)

  • 21. Deep centroid: a general deep cascade classifier for biomedical omics data classification.
    Xie K; Hou Y; Zhou X
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38305432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MetaNN: accurate classification of host phenotypes from metagenomic data using neural networks.
    Lo C; Marculescu R
    BMC Bioinformatics; 2019 Jun; 20(Suppl 12):314. PubMed ID: 31216991
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multi-class boosting for the analysis of multiple incomplete views on microbiome data.
    Simeon A; Radovanović M; Lončar-Turukalo T; Ceci M; Brdar S; Pio G
    BMC Bioinformatics; 2024 May; 25(1):188. PubMed ID: 38745112
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compositionality, sparsity, spurious heterogeneity, and other data-driven challenges for machine learning algorithms within plant microbiome studies.
    Busato S; Gordon M; Chaudhari M; Jensen I; Akyol T; Andersen S; Williams C
    Curr Opin Plant Biol; 2023 Feb; 71():102326. PubMed ID: 36538837
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MITRE: inferring features from microbiota time-series data linked to host status.
    Bogart E; Creswell R; Gerber GK
    Genome Biol; 2019 Sep; 20(1):186. PubMed ID: 31477162
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robust biomarker discovery for microbiome-wide association studies.
    Zhu Q; Li B; He T; Li G; Jiang X
    Methods; 2020 Feb; 173():44-51. PubMed ID: 31238097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. prPred-DRLF: Plant R protein predictor using deep representation learning features.
    Wang Y; Xu L; Zou Q; Lin C
    Proteomics; 2022 Jan; 22(1-2):e2100161. PubMed ID: 34569713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. phyLoSTM: a novel deep learning model on disease prediction from longitudinal microbiome data.
    Sharma D; Xu W
    Bioinformatics; 2021 Nov; 37(21):3707-3714. PubMed ID: 34213529
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A semi-supervised deep learning method based on stacked sparse auto-encoder for cancer prediction using RNA-seq data.
    Xiao Y; Wu J; Lin Z; Zhao X
    Comput Methods Programs Biomed; 2018 Nov; 166():99-105. PubMed ID: 30415723
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of interresidue contacts with DeepMetaPSICOV in CASP13.
    Kandathil SM; Greener JG; Jones DT
    Proteins; 2019 Dec; 87(12):1092-1099. PubMed ID: 31298436
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of Deep Learning in Plant-Microbiota Association Analysis.
    Deng Z; Zhang J; Li J; Zhang X
    Front Genet; 2021; 12():697090. PubMed ID: 34691142
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sparse representation approaches for the classification of high-dimensional biological data.
    Li Y; Ngom A
    BMC Syst Biol; 2013; 7 Suppl 4(Suppl 4):S6. PubMed ID: 24565287
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Representation learning for clinical time series prediction tasks in electronic health records.
    Ruan T; Lei L; Zhou Y; Zhai J; Zhang L; He P; Gao J
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 8):259. PubMed ID: 31842854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting microbiomes through a deep latent space.
    García-Jiménez B; Muñoz J; Cabello S; Medina J; Wilkinson MD
    Bioinformatics; 2021 Jun; 37(10):1444-1451. PubMed ID: 33289510
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Machine learning methods for microbiome studies.
    Namkung J
    J Microbiol; 2020 Mar; 58(3):206-216. PubMed ID: 32108316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CACONET: a novel classification framework for microbial correlation networks.
    Xu Y; Nash K; Acharjee A; Gkoutos GV
    Bioinformatics; 2022 Mar; 38(6):1639-1647. PubMed ID: 34983063
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Streaming histogram sketching for rapid microbiome analytics.
    Rowe WP; Carrieri AP; Alcon-Giner C; Caim S; Shaw A; Sim K; Kroll JS; Hall LJ; Pyzer-Knapp EO; Winn MD
    Microbiome; 2019 Mar; 7(1):40. PubMed ID: 30878035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.