BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 32265933)

  • 21. Targeting the tumor microenvironment to overcome immune checkpoint blockade therapy resistance.
    Li Y; Liu J; Gao L; Liu Y; Meng F; Li X; Qin FX
    Immunol Lett; 2020 Apr; 220():88-96. PubMed ID: 30885690
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predictive biomarkers for PD-1 and PD-L1 immune checkpoint blockade therapy.
    Song Y; Li Z; Xue W; Zhang M
    Immunotherapy; 2019 Apr; 11(6):515-529. PubMed ID: 30860441
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epigenetic modifiers in immunotherapy: a focus on checkpoint inhibitors.
    Terranova-Barberio M; Thomas S; Munster PN
    Immunotherapy; 2016 Jun; 8(6):705-19. PubMed ID: 27197539
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combination Cancer Immunotherapy of Nanoparticle-Based Immunogenic Cell Death Inducers and Immune Checkpoint Inhibitors.
    Qi J; Jin F; Xu X; Du Y
    Int J Nanomedicine; 2021; 16():1435-1456. PubMed ID: 33654395
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hyperprogressive Disease: Main Features and Key Controversies.
    Arasanz H; Zuazo M; Bocanegra A; Chocarro L; Blanco E; Martínez M; Morilla I; Fernández G; Teijeira L; Morente P; Echaide M; Castro N; Fernández L; Garnica M; Ramos P; Escors D; Kochan G; Vera R
    Int J Mol Sci; 2021 Apr; 22(7):. PubMed ID: 33916696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rheumatic Manifestations in Patients Treated with Immune Checkpoint Inhibitors.
    Melissaropoulos K; Klavdianou K; Filippopoulou A; Kalofonou F; Kalofonos H; Daoussis D
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32403289
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comprehensive Immune Monitoring of Clinical Trials to Advance Human Immunotherapy.
    Hartmann FJ; Babdor J; Gherardini PF; Amir ED; Jones K; Sahaf B; Marquez DM; Krutzik P; O'Donnell E; Sigal N; Maecker HT; Meyer E; Spitzer MH; Bendall SC
    Cell Rep; 2019 Jul; 28(3):819-831.e4. PubMed ID: 31315057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pretreatment Innate Cell Populations and CD4 T Cells in Blood Are Associated With Response to Immune Checkpoint Blockade in Melanoma Patients.
    Pirozyan MR; McGuire HM; Emran AA; Tseng HY; Tiffen JC; Lee JH; Carlino MS; Menzies AM; Long GV; Scolyer RA; Fazekas de St Groth B; Hersey P
    Front Immunol; 2020; 11():372. PubMed ID: 32210968
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cancer, obesity and immunometabolism - Connecting the dots.
    Dyck L; Lynch L
    Cancer Lett; 2018 Mar; 417():11-20. PubMed ID: 29253522
    [No Abstract]   [Full Text] [Related]  

  • 30. Systemic Blood Immune Cell Populations as Biomarkers for the Outcome of Immune Checkpoint Inhibitor Therapies.
    Hernandez C; Arasanz H; Chocarro L; Bocanegra A; Zuazo M; Fernandez-Hinojal G; Blanco E; Vera R; Escors D; Kochan G
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32244396
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sarcomas: Immune biomarker expression and checkpoint inhibitor trials.
    Zhu MMT; Shenasa E; Nielsen TO
    Cancer Treat Rev; 2020 Dec; 91():102115. PubMed ID: 33130422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conference scene: Immune signatures in the tumor and beyond.
    Kandalaft LE; Kalos M; Melief CJ; Speiser DE; Coukos G
    Immunotherapy; 2012 Aug; 4(8):761-72. PubMed ID: 22947003
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Understanding tumour cell heterogeneity and its implication for immunotherapy in liver cancer using single-cell analysis.
    Heinrich S; Craig AJ; Ma L; Heinrich B; Greten TF; Wang XW
    J Hepatol; 2021 Mar; 74(3):700-715. PubMed ID: 33271159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A digital single-molecule nanopillar SERS platform for predicting and monitoring immune toxicities in immunotherapy.
    Li J; Wuethrich A; Sina AAI; Cheng HH; Wang Y; Behren A; Mainwaring PN; Trau M
    Nat Commun; 2021 Feb; 12(1):1087. PubMed ID: 33597530
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immune Landscape in Tumor Microenvironment: Implications for Biomarker Development and Immunotherapy.
    Pérez-Romero K; Rodríguez RM; Amedei A; Barceló-Coblijn G; Lopez DH
    Int J Mol Sci; 2020 Aug; 21(15):. PubMed ID: 32752264
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tackling Resistance to Cancer Immunotherapy: What Do We Know?
    Gondhowiardjo SA; Handoko ; Jayalie VF; Apriantoni R; Barata AR; Senoaji F; Utami IJW; Maubere F; Nuryadi E; Giselvania A
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32911646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NK Cell-Based Immune Checkpoint Inhibition.
    Khan M; Arooj S; Wang H
    Front Immunol; 2020; 11():167. PubMed ID: 32117298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of patient sex on the efficacy and safety of anticancer immunotherapy.
    Pala L; Conforti F
    Expert Opin Drug Saf; 2021 Dec; 20(12):1535-1544. PubMed ID: 34468257
    [No Abstract]   [Full Text] [Related]  

  • 39. Biomarkers of related driver genes predict anti-tumor efficacy of immune checkpoint inhibitors.
    Jiang S; Geng S; Luo X; Zhang C; Yu Y; Cheng M; Zhang S; Shi N; Dong M
    Front Immunol; 2022; 13():995785. PubMed ID: 36189266
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced anti-tumor effects of the PD-1 blockade combined with a highly absorptive form of curcumin targeting STAT3.
    Hayakawa T; Yaguchi T; Kawakami Y
    Cancer Sci; 2020 Dec; 111(12):4326-4335. PubMed ID: 33006786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.