These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32265954)

  • 1. Efficient Generation of CRISPR/Cas9-Mediated Homozygous/Biallelic
    Zhang H; Cao Y; Zhang H; Xu Y; Zhou C; Liu W; Zhu R; Shang C; Li J; Shen Z; Guo S; Hu Z; Fu C; Sun D
    Front Plant Sci; 2020; 11():294. PubMed ID: 32265954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9-Mediated Generation of Mutant Lines in
    Zhang CX; Li RJ; Baude L; Reinhardt D; Xie ZP; Staehelin C
    Biology (Basel); 2024 Jan; 13(1):. PubMed ID: 38275729
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Liu S; Wang X; Li Q; Peng W; Zhang Z; Chu P; Guo S; Fan Y; Lyu S
    Front Plant Sci; 2022; 13():952428. PubMed ID: 36330262
    [No Abstract]   [Full Text] [Related]  

  • 4. Ribozyme-mediated CRISPR/Cas9 gene editing in pyrethrum (Tanacetum cinerariifolium) hairy roots using a RNA polymerase II-dependent promoter.
    Li JW; Zeng T; Xu ZZ; Li JJ; Hu H; Yu Q; Zhou L; Zheng RR; Luo J; Wang CY
    Plant Methods; 2022 Mar; 18(1):32. PubMed ID: 35292048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Efficient Hairy Root System for Validation of Plant Transformation Vector and CRISPR/Cas Construct Activities in Cucumber (
    Nguyen DV; Hoang TT; Le NT; Tran HT; Nguyen CX; Moon YH; Chu HH; Do PT
    Front Plant Sci; 2021; 12():770062. PubMed ID: 35222448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hairy root transformation system as a tool for CRISPR/Cas9-directed genome editing in oilseed rape (
    Jedličková V; Mácová K; Štefková M; Butula J; Staveníková J; Sedláček M; Robert HS
    Front Plant Sci; 2022; 13():919290. PubMed ID: 35991410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of Hairy Root and Whole-Plant Transformation Protocols to Achieve Efficient CRISPR/Cas9 Genome Editing in Soybean.
    Kong Q; Li J; Wang S; Feng X; Shou H
    Plants (Basel); 2023 Feb; 12(5):. PubMed ID: 36903878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient CRISPR/Cas9 Genome Editing of
    Odipio J; Alicai T; Ingelbrecht I; Nusinow DA; Bart R; Taylor NJ
    Front Plant Sci; 2017; 8():1780. PubMed ID: 29093724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9-Mediated Genome Editing in Soybean Hairy Roots.
    Cai Y; Chen L; Liu X; Sun S; Wu C; Jiang B; Han T; Hou W
    PLoS One; 2015; 10(8):e0136064. PubMed ID: 26284791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens -transformed roots and Agrobacterium rhizogenes-transformed hairy roots.
    Crane C; Wright E; Dixon RA; Wang ZY
    Planta; 2006 May; 223(6):1344-54. PubMed ID: 16575594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fine-tuning CRISPR/Cas9 gene editing in common bean (
    de Koning R; Daryanavard H; Garmyn J; Kiekens R; Toili MEM; Angenon G
    Front Plant Sci; 2023; 14():1233418. PubMed ID: 37929181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme.
    Michno JM; Wang X; Liu J; Curtin SJ; Kono TJ; Stupar RM
    GM Crops Food; 2015; 6(4):243-52. PubMed ID: 26479970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Inactivation of Symbiotic Nitrogen Fixation Related Genes in Lotus japonicus Using CRISPR-Cas9.
    Wang L; Wang L; Tan Q; Fan Q; Zhu H; Hong Z; Zhang Z; Duanmu D
    Front Plant Sci; 2016; 7():1333. PubMed ID: 27630657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Production of Biallelic RAG1 Knockout Mouse Embryonic Stem Cell Using CRISPR/Cas9.
    Mehravar M; Shirazi A; Mehrazar MM; Nazari M; Banan M; Salimi M
    Iran J Biotechnol; 2019 Jan; 17(1):e2205. PubMed ID: 31457047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient
    Zhou L; Wang Y; Wang P; Wang C; Wang J; Wang X; Cheng H
    Front Plant Sci; 2022; 13():1059404. PubMed ID: 36643290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New improvements in grapevine genome editing: high efficiency biallelic homozygous knock-out from regenerated plantlets by using an optimized zCas9i.
    Villette J; Lecourieux F; Bastiancig E; Héloir MC; Poinssot B
    Plant Methods; 2024 Mar; 20(1):45. PubMed ID: 38500114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Multi-Sites Genome Editing and Plant Regeneration
    Cui Y; Zhao J; Gao Y; Zhao R; Zhang J; Kong L
    Front Plant Sci; 2021; 12():751891. PubMed ID: 34721480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient CRISPR/Cas9-Mediated Gene Editing in an Interspecific Hybrid Poplar With a Highly Heterozygous Genome.
    Wang J; Wu H; Chen Y; Yin T
    Front Plant Sci; 2020; 11():996. PubMed ID: 32719704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations.
    Boisson-Dernier A; Chabaud M; Garcia F; Bécard G; Rosenberg C; Barker DG
    Mol Plant Microbe Interact; 2001 Jun; 14(6):695-700. PubMed ID: 11386364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Efficient Gene Knockout in Medicago truncatula Genotype R108 Using CRISPR-Cas9 System and an Optimized Agrobacterium Transformation Method.
    Lawrenson T; Atkinson N; Forner M; Harwood W
    Methods Mol Biol; 2023; 2653():221-252. PubMed ID: 36995630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.