These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32265983)

  • 1. Comparison of SNP Calling Pipelines and NGS Platforms to Predict the Genomic Regions Harboring Candidate Genes for Nodulation in Cultivated Peanut.
    Peng Z; Zhao Z; Clevenger JP; Chu Y; Paudel D; Ozias-Akins P; Wang J
    Front Genet; 2020; 11():222. PubMed ID: 32265983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Target enrichment sequencing in cultivated peanut (Arachis hypogaea L.) using probes designed from transcript sequences.
    Peng Z; Fan W; Wang L; Paudel D; Leventini D; Tillman BL; Wang J
    Mol Genet Genomics; 2017 Oct; 292(5):955-965. PubMed ID: 28492983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The application of CRISPR/Cas9 in hairy roots to explore the functions of AhNFR1 and AhNFR5 genes during peanut nodulation.
    Shu H; Luo Z; Peng Z; Wang J
    BMC Plant Biol; 2020 Sep; 20(1):417. PubMed ID: 32894045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley.
    Mascher M; Wu S; Amand PS; Stein N; Poland J
    PLoS One; 2013; 8(10):e76925. PubMed ID: 24098570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide SNP Genotyping Resolves Signatures of Selection and Tetrasomic Recombination in Peanut.
    Clevenger J; Chu Y; Chavarro C; Agarwal G; Bertioli DJ; Leal-Bertioli SCM; Pandey MK; Vaughn J; Abernathy B; Barkley NA; Hovav R; Burow M; Nayak SN; Chitikineni A; Isleib TG; Holbrook CC; Jackson SA; Varshney RK; Ozias-Akins P
    Mol Plant; 2017 Feb; 10(2):309-322. PubMed ID: 27993622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-Wide SNP Calling from Genotyping by Sequencing (GBS) Data: A Comparison of Seven Pipelines and Two Sequencing Technologies.
    Torkamaneh D; Laroche J; Belzile F
    PLoS One; 2016; 11(8):e0161333. PubMed ID: 27547936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GWAS and bulked segregant analysis reveal the Loci controlling growth habit-related traits in cultivated Peanut (Arachis hypogaea L.).
    Li L; Cui S; Dang P; Yang X; Wei X; Chen K; Liu L; Chen CY
    BMC Genomics; 2022 May; 23(1):403. PubMed ID: 35624420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haplotype-Based Genotyping in Polyploids.
    Clevenger JP; Korani W; Ozias-Akins P; Jackson S
    Front Plant Sci; 2018; 9():564. PubMed ID: 29755500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome profiles reveal gene regulation of peanut (Arachis hypogaea L.) nodulation.
    Peng Z; Liu F; Wang L; Zhou H; Paudel D; Tan L; Maku J; Gallo M; Wang J
    Sci Rep; 2017 Jan; 7():40066. PubMed ID: 28059169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GWAS Discovery Of Candidate Genes for Yield-Related Traits in Peanut and Support from Earlier QTL Mapping Studies.
    Wang J; Yan C; Li Y; Li C; Zhao X; Yuan C; Sun Q; Shan S
    Genes (Basel); 2019 Oct; 10(10):. PubMed ID: 31614874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and Evaluation of Single-Nucleotide Polymorphisms in Allotetraploid Peanut (Arachis hypogaea L.) Based on Amplicon Sequencing Combined with High Resolution Melting (HRM) Analysis.
    Hong Y; Pandey MK; Liu Y; Chen X; Liu H; Varshney RK; Liang X; Huang S
    Front Plant Sci; 2015; 6():1068. PubMed ID: 26697032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut (Arachis hypogaea L.).
    Peng Z; Gallo M; Tillman BL; Rowland D; Wang J
    Mol Genet Genomics; 2016 Feb; 291(1):363-81. PubMed ID: 26362763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of genomic regions and candidate genes controlling shelling percentage using QTL-seq approach in cultivated peanut (Arachis hypogaea L.).
    Luo H; Pandey MK; Khan AW; Guo J; Wu B; Cai Y; Huang L; Zhou X; Chen Y; Chen W; Liu N; Lei Y; Liao B; Varshney RK; Jiang H
    Plant Biotechnol J; 2019 Jul; 17(7):1248-1260. PubMed ID: 30549165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Density Genetic Variation Map Reveals Key Candidate Loci and Genes Associated With Important Agronomic Traits in Peanut.
    Zhao H; Tian R; Xia H; Li C; Li G; Li A; Zhang X; Zhou X; Ma J; Huang H; Zhang K; Thudi M; Ma C; Wang X; Zhao C
    Front Genet; 2022; 13():845602. PubMed ID: 35401655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning as an Effective Method for Identifying True Single Nucleotide Polymorphisms in Polyploid Plants.
    Korani W; Clevenger JP; Chu Y; Ozias-Akins P
    Plant Genome; 2019 Mar; 12(1):. PubMed ID: 30951095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Target Amplicon Sequencing for Genotyping Genome-Wide Single Nucleotide Polymorphisms Identified by Whole-Genome Resequencing in Peanut.
    Shirasawa K; Kuwata C; Watanabe M; Fukami M; Hirakawa H; Isobe S
    Plant Genome; 2016 Nov; 9(3):. PubMed ID: 27902796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of seven SNP calling pipelines for the next-generation sequencing data of chickens.
    Liu J; Shen Q; Bao H
    PLoS One; 2022; 17(1):e0262574. PubMed ID: 35100292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural polymorphisms in a pair of NSP2 homoeologs can cause loss of nodulation in peanut.
    Peng Z; Chen H; Tan L; Shu H; Varshney RK; Zhou Z; Zhao Z; Luo Z; Chitikineni A; Wang L; Maku J; López Y; Gallo M; Zhou H; Wang J
    J Exp Bot; 2021 Feb; 72(4):1104-1118. PubMed ID: 33130897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole genome resequencing identifies candidate genes and allelic diagnostic markers for resistance to
    Zhang C; Xie W; Fu H; Chen Y; Chen H; Cai T; Yang Q; Zhuang Y; Zhong X; Chen K; Gao M; Liu F; Wan Y; Pandey MK; Varshney RK; Zhuang W
    Front Plant Sci; 2022; 13():1048168. PubMed ID: 36684803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast-GBS: a new pipeline for the efficient and highly accurate calling of SNPs from genotyping-by-sequencing data.
    Torkamaneh D; Laroche J; Bastien M; Abed A; Belzile F
    BMC Bioinformatics; 2017 Jan; 18(1):5. PubMed ID: 28049422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.