These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 32266234)
1. Harnessing Fiber Diameter-Dependent Effects of Myoblasts Toward Biomimetic Scaffold-Based Skeletal Muscle Regeneration. Narayanan N; Jiang C; Wang C; Uzunalli G; Whittern N; Chen D; Jones OG; Kuang S; Deng M Front Bioeng Biotechnol; 2020; 8():203. PubMed ID: 32266234 [TBL] [Abstract][Full Text] [Related]
2. Role of integrin α7β1 signaling in myoblast differentiation on aligned polydioxanone scaffolds. McClure MJ; Clark NM; Hyzy SL; Chalfant CE; Olivares-Navarrete R; Boyan BD; Schwartz Z Acta Biomater; 2016 Jul; 39():44-54. PubMed ID: 27142254 [TBL] [Abstract][Full Text] [Related]
3. In-vitro effectiveness of poly-β-alanine reinforced poly(3-hydroxybutyrate) fibrous scaffolds for skeletal muscle regeneration. Konuk Tokak E; Çetin Altındal D; Akdere ÖE; Gümüşderelioğlu M Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112528. PubMed ID: 34857307 [TBL] [Abstract][Full Text] [Related]
4. Human Amniotic Membrane with Aligned Electrospun Fiber as Scaffold for Aligned Tissue Regeneration. Hasmad H; Yusof MR; Mohd Razi ZR; Hj Idrus RB; Chowdhury SR Tissue Eng Part C Methods; 2018 Jun; 24(6):368-378. PubMed ID: 29690856 [TBL] [Abstract][Full Text] [Related]
5. Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices. Shin YC; Lee JH; Jin L; Kim MJ; Kim YJ; Hyun JK; Jung TG; Hong SW; Han DW J Nanobiotechnology; 2015 Mar; 13():21. PubMed ID: 25886153 [TBL] [Abstract][Full Text] [Related]
6. Micro/nano-hierarchical scaffold fabricated using a cell electrospinning/3D printing process for co-culturing myoblasts and HUVECs to induce myoblast alignment and differentiation. Yeo M; Kim G Acta Biomater; 2020 Apr; 107():102-114. PubMed ID: 32142759 [TBL] [Abstract][Full Text] [Related]
7. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809 [TBL] [Abstract][Full Text] [Related]
8. Combining a micro/nano-hierarchical scaffold with cell-printing of myoblasts induces cell alignment and differentiation favorable to skeletal muscle tissue regeneration. Yeo M; Lee H; Kim GH Biofabrication; 2016 Sep; 8(3):035021. PubMed ID: 27634918 [TBL] [Abstract][Full Text] [Related]
9. Harnessing nerve-muscle cell interactions for biomaterials-based skeletal muscle regeneration. Narayanan N; Lengemann P; Kim KH; Kuang L; Sobreira T; Hedrick V; Aryal UK; Kuang S; Deng M J Biomed Mater Res A; 2021 Mar; 109(3):289-299. PubMed ID: 32490576 [TBL] [Abstract][Full Text] [Related]
10. Recycled algae-based carbon materials as electroconductive 3D printed skeletal muscle tissue engineering scaffolds. Bilge S; Ergene E; Talak E; Gokyer S; Donar YO; Sınağ A; Yilgor Huri P J Mater Sci Mater Med; 2021 Jun; 32(7):73. PubMed ID: 34152502 [TBL] [Abstract][Full Text] [Related]
11. Effect of Hierarchical Scaffold Consisting of Aligned dECM Nanofibers and Poly(lactide- Lee H; Kim W; Lee J; Yoo JJ; Kim GH; Lee SJ ACS Appl Mater Interfaces; 2019 Oct; 11(43):39449-39458. PubMed ID: 31584255 [TBL] [Abstract][Full Text] [Related]
14. Improving myoblast differentiation on electrospun poly(ε-caprolactone) scaffolds. Abarzúa-Illanes PN; Padilla C; Ramos A; Isaacs M; Ramos-Grez J; Olguín HC; Valenzuela LM J Biomed Mater Res A; 2017 Aug; 105(8):2241-2251. PubMed ID: 28426898 [TBL] [Abstract][Full Text] [Related]
15. Gold and gold-silver alloy nanoparticles enhance the myogenic differentiation of myoblasts through p38 MAPK signaling pathway and promote in vivo skeletal muscle regeneration. Ge J; Liu K; Niu W; Chen M; Wang M; Xue Y; Gao C; Ma PX; Lei B Biomaterials; 2018 Aug; 175():19-29. PubMed ID: 29793089 [TBL] [Abstract][Full Text] [Related]
16. 3D myotube guidance on hierarchically organized anisotropic and conductive fibers for skeletal muscle tissue engineering. Zhang Y; Zhang Z; Wang Y; Su Y; Chen M Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111070. PubMed ID: 32806237 [TBL] [Abstract][Full Text] [Related]
17. Carbon-based hierarchical scaffolds for myoblast differentiation: Synergy between nano-functionalization and alignment. Patel A; Mukundan S; Wang W; Karumuri A; Sant V; Mukhopadhyay SM; Sant S Acta Biomater; 2016 Mar; 32():77-88. PubMed ID: 26768231 [TBL] [Abstract][Full Text] [Related]
18. Group I Paks support muscle regeneration and counteract cancer-associated muscle atrophy. Cerquone Perpetuini A; Re Cecconi AD; Chiappa M; Martinelli GB; Fuoco C; Desiderio G; Castagnoli L; Gargioli C; Piccirillo R; Cesareni G J Cachexia Sarcopenia Muscle; 2018 Aug; 9(4):727-746. PubMed ID: 29781585 [TBL] [Abstract][Full Text] [Related]
19. Nanofiber Yarn/Hydrogel Core-Shell Scaffolds Mimicking Native Skeletal Muscle Tissue for Guiding 3D Myoblast Alignment, Elongation, and Differentiation. Wang L; Wu Y; Guo B; Ma PX ACS Nano; 2015 Sep; 9(9):9167-79. PubMed ID: 26280983 [TBL] [Abstract][Full Text] [Related]
20. Myoblast maturity on aligned microfiber bundles at the onset of strain application impacts myogenic outcomes. Somers SM; Zhang NY; Morrissette-McAlmon JBF; Tran K; Mao HQ; Grayson WL Acta Biomater; 2019 Aug; 94():232-242. PubMed ID: 31212110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]