BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 32266248)

  • 21. Ocular disposition, pharmacokinetics, efficacy and safety of nanoparticle-formulated ophthalmic drugs.
    Bu HZ; Gukasyan HJ; Goulet L; Lou XJ; Xiang C; Koudriakova T
    Curr Drug Metab; 2007 Feb; 8(2):91-107. PubMed ID: 17305490
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel in situ gelling ophthalmic drug delivery system based on gellan gum and hydroxyethylcellulose: Innovative rheological characterization, in vitro and in vivo evidence of a sustained precorneal retention time.
    Destruel PL; Zeng N; Seguin J; Douat S; Rosa F; Brignole-Baudouin F; Dufaÿ S; Dufaÿ-Wojcicki A; Maury M; Mignet N; Boudy V
    Int J Pharm; 2020 Jan; 574():118734. PubMed ID: 31705970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ gel systems as 'smart' carriers for sustained ocular drug delivery.
    Agrawal AK; Das M; Jain S
    Expert Opin Drug Deliv; 2012 Apr; 9(4):383-402. PubMed ID: 22432690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in Biodegradable Nano-Sized Polymer-Based Ocular Drug Delivery.
    Lynch C; Kondiah PPD; Choonara YE; du Toit LC; Ally N; Pillay V
    Polymers (Basel); 2019 Aug; 11(8):. PubMed ID: 31434273
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advanced Strategies for Tissue Engineering in Regenerative Medicine: A Biofabrication and Biopolymer Perspective.
    Lynch CR; Kondiah PPD; Choonara YE
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33925886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogels-based ophthalmic drug delivery systems for treatment of ocular diseases.
    Fang G; Yang X; Wang Q; Zhang A; Tang B
    Mater Sci Eng C Mater Biol Appl; 2021 Aug; 127():112212. PubMed ID: 34225864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advances and challenges in developing smart, multifunctional microneedles for biomedical applications.
    Tavafoghi M; Nasrollahi F; Karamikamkar S; Mahmoodi M; Nadine S; Mano JF; Darabi MA; Jahangiry J; Ahadian S; Khademhosseini A
    Biotechnol Bioeng; 2022 Oct; 119(10):2715-2730. PubMed ID: 35854645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stimuli sensitive hydrogels for ophthalmic drug delivery: A review.
    Kushwaha SK; Saxena P; Rai A
    Int J Pharm Investig; 2012 Apr; 2(2):54-60. PubMed ID: 23119233
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanistic modeling of ophthalmic drug delivery to the anterior chamber by eye drops and contact lenses.
    Gause S; Hsu KH; Shafor C; Dixon P; Powell KC; Chauhan A
    Adv Colloid Interface Sci; 2016 Jul; 233():139-154. PubMed ID: 26318359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polymer-based carriers for ophthalmic drug delivery.
    Imperiale JC; Acosta GB; Sosnik A
    J Control Release; 2018 Sep; 285():106-141. PubMed ID: 29964135
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases.
    Onugwu AL; Nwagwu CS; Onugwu OS; Echezona AC; Agbo CP; Ihim SA; Emeh P; Nnamani PO; Attama AA; Khutoryanskiy VV
    J Control Release; 2023 Feb; 354():465-488. PubMed ID: 36642250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cationic self-assembled peptide-based molecular hydrogels for extended ocular drug delivery.
    Liu H; Bi X; Wu Y; Pan M; Ma X; Mo L; Wang J; Li X
    Acta Biomater; 2021 Sep; 131():162-171. PubMed ID: 34157453
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and Development of Thermoreversible Ophthalmic In Situ Hydrogel of Moxifloxacin HCl.
    Shastri DH; Prajapati ST; Patel LD
    Curr Drug Deliv; 2010 Jul; 7(3):238-43. PubMed ID: 20497100
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An insight on ophthalmic drug delivery systems: Focus on polymeric biomaterials-based carriers.
    Shafiq M; Rafique M; Cui Y; Pan L; Do CW; Ho EA
    J Control Release; 2023 Oct; 362():446-467. PubMed ID: 37640109
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoparticles laden in situ gelling system for ocular drug targeting.
    Kumar D; Jain N; Gulati N; Nagaich U
    J Adv Pharm Technol Res; 2013 Jan; 4(1):9-17. PubMed ID: 23662277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Review of Injectable Polymeric Hydrogel Systems for Application in Bone Tissue Engineering.
    Kondiah PJ; Choonara YE; Kondiah PP; Marimuthu T; Kumar P; du Toit LC; Pillay V
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27879635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polysaccharide-Based Nanocarriers for Ocular Drug Delivery.
    Formica ML; Calles JA; Palma SD
    Curr Pharm Des; 2015; 21(33):4851-68. PubMed ID: 26290208
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Imaging Methods for the Assessment of a Complex Hydrogel as an Ocular Drug Delivery System for Glaucoma Treatment: Opportunities and Challenges in Preclinical Evaluation.
    Das S; Saha D; Majumdar S; Giri L
    Mol Pharm; 2022 Mar; 19(3):733-748. PubMed ID: 35179892
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advanced nanodelivery platforms for topical ophthalmic drug delivery.
    Gholizadeh S; Wang Z; Chen X; Dana R; Annabi N
    Drug Discov Today; 2021 Jun; 26(6):1437-1449. PubMed ID: 33689858
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In-situ tear fluid dissolving nanofibers enable prolonged viscosity-enhanced dual drug delivery to the eye.
    Rohde F; Walther M; Wächter J; Knetzger N; Lotz C; Windbergs M
    Int J Pharm; 2022 Mar; 616():121513. PubMed ID: 35085733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.