These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32266482)

  • 41. Hydrogen Adsorption on Nearly Zigzag-Edged Nanoribbons: A Density Functional Theory Study.
    Mananghaya MR; Santos GN; Yu D; Stampfl C
    Sci Rep; 2017 Nov; 7(1):15727. PubMed ID: 29146977
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A First Principles study on Boron-doped Graphene decorated by Ni-Ti-Mg atoms for Enhanced Hydrogen Storage Performance.
    Nachimuthu S; Lai PJ; Leggesse EG; Jiang JC
    Sci Rep; 2015 Nov; 5():16797. PubMed ID: 26577659
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultra-high hydrogen storage capacity of holey graphyne.
    Li Q; Gao Y; Zhang H; Pan H; Li QF; Zhao J
    Nanotechnology; 2021 Feb; ():. PubMed ID: 33561848
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Atomic simulation of adsorption of SO
    Karami Z; Hamed Mashhadzadeh A; Habibzadeh S; Ganjali MR; Ghardi EM; Hasnaoui A; Vatanpour V; Sharma G; Esmaeili A; Stadler FJ; Saeb MR
    J Mol Model; 2021 Feb; 27(3):70. PubMed ID: 33543346
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Theoretical investigation of Ti-adsorbed graphene for hydrogen storage using the ab-initio method.
    Park HL; Yoo DS; Yi SC; Chung YC
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6131-5. PubMed ID: 22121672
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of hydrogen spillover on Pt-decorated carbon nanocones for enhancing hydrogen storage capacity: A DFT mechanistic study.
    Yodsin N; Rungnim C; Promarak V; Namuangruk S; Kungwan N; Rattanawan R; Jungsuttiwong S
    Phys Chem Chem Phys; 2018 Aug; 20(32):21194-21203. PubMed ID: 30083668
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of Structural Disorders on the Li Storage Capacity of Graphene Nanomaterials: A First-Principles Study.
    Tsai YJ; Kuo CL
    ACS Appl Mater Interfaces; 2020 May; 12(20):22917-22929. PubMed ID: 32352275
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Is hydrogen storage possible in metal-doped graphite 2D systems in conditions found on Earth?
    Sigal A; Rojas MI; Leiva EP
    Phys Rev Lett; 2011 Oct; 107(15):158701. PubMed ID: 22107325
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites.
    Lin X; Telepeni I; Blake AJ; Dailly A; Brown CM; Simmons JM; Zoppi M; Walker GS; Thomas KM; Mays TJ; Hubberstey P; Champness NR; Schröder M
    J Am Chem Soc; 2009 Feb; 131(6):2159-71. PubMed ID: 19159298
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced hydrogen storage performance of graphene nanoflakes doped with Cr atoms: a DFT study.
    Xiang C; Li A; Yang S; Lan Z; Xie W; Tang Y; Xu H; Wang Z; Gu H
    RSC Adv; 2019 Aug; 9(44):25690-25696. PubMed ID: 35530093
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Theoretical Framework for Encapsulation of Inorganic B
    Janjua MRSA
    Inorg Chem; 2021 Feb; 60(4):2816-2828. PubMed ID: 33525872
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reversible Hydrogen Storage in Metal-Decorated Honeycomb Borophene Oxide.
    Habibi P; Vlugt TJH; Dey P; Moultos OA
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43233-43240. PubMed ID: 34459595
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular Design of a Reversible Hydrogen Storage Device Composed of the Graphene Nanoflake-Magnesium-H
    Tachikawa H; Izumi Y; Iyama T; Azumi K
    ACS Omega; 2021 Mar; 6(11):7778-7785. PubMed ID: 33778289
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reversible Hydrogen Storage Media by g-CN Monolayer Decorated with NLi
    Chen X; Hou W; Zhai F; Cheng J; Yuan S; Li Y; Wang N; Zhang L; Ren J
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839015
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Theoretical insight into hydrogen adsorption onto graphene: a first-principles B3LYP-D3 study.
    Darvish Ganji M; Hosseini-Khah SM; Amini-Tabar Z
    Phys Chem Chem Phys; 2015 Jan; 17(4):2504-11. PubMed ID: 25490973
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydrogen storage in bimetallic Ti-Al sub-nanoclusters supported on graphene.
    Ramos-Castillo CM; Reveles JU; Cifuentes-Quintal ME; Zope RR; de Coss R
    Phys Chem Chem Phys; 2017 Aug; 19(31):21174-21184. PubMed ID: 28752877
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Open carbon frameworks - a search for optimal geometry for hydrogen storage.
    Kuchta B; Firlej L; Mohammadhosseini A; Beckner M; Romanos J; Pfeifer P
    J Mol Model; 2013 Oct; 19(10):4079-87. PubMed ID: 23224800
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A first-principles study of lithium-decorated hybrid boron nitride and graphene domains for hydrogen storage.
    Hu ZY; Shao X; Wang D; Liu LM; Johnson JK
    J Chem Phys; 2014 Aug; 141(8):084711. PubMed ID: 25173034
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hydrogen storage in pure and Li-doped carbon nanopores: combined effects of concavity and doping.
    Cabria I; López MJ; Alonso JA
    J Chem Phys; 2008 Apr; 128(14):144704. PubMed ID: 18412468
    [TBL] [Abstract][Full Text] [Related]  

  • 60. External electric field induced hydrogen storage/release on calcium-decorated single-layer and bilayer silicene.
    Song EH; Yoo SH; Kim JJ; Lai SW; Jiang Q; Cho SO
    Phys Chem Chem Phys; 2014 Nov; 16(43):23985-92. PubMed ID: 25285782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.