BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32266646)

  • 1. Network aggregation improves gene function prediction of grapevine gene co-expression networks.
    Wong DCJ
    Plant Mol Biol; 2020 Jul; 103(4-5):425-441. PubMed ID: 32266646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VTCdb: a gene co-expression database for the crop species Vitis vinifera (grapevine).
    Wong DC; Sweetman C; Drew DP; Ford CM
    BMC Genomics; 2013 Dec; 14():882. PubMed ID: 24341535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics.
    Dal Santo S; Vannozzi A; Tornielli GB; Fasoli M; Venturini L; Pezzotti M; Zenoni S
    PLoS One; 2013; 8(4):e62206. PubMed ID: 23614035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and transcriptional regulation of the major intrinsic protein gene family in grapevine.
    Wong DCJ; Zhang L; Merlin I; Castellarin SD; Gambetta GA
    BMC Genomics; 2018 Apr; 19(1):248. PubMed ID: 29642857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide analysis of cis-regulatory element structure and discovery of motif-driven gene co-expression networks in grapevine.
    Wong DCJ; Lopez Gutierrez R; Gambetta GA; Castellarin SD
    DNA Res; 2017 Jun; 24(3):311-326. PubMed ID: 28119334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program.
    Fasoli M; Dal Santo S; Zenoni S; Tornielli GB; Farina L; Zamboni A; Porceddu A; Venturini L; Bicego M; Murino V; Ferrarini A; Delledonne M; Pezzotti M
    Plant Cell; 2012 Sep; 24(9):3489-505. PubMed ID: 22948079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive Sequence Analysis of
    Liu Z; Haider MS; Khan N; Fang J
    Genes (Basel); 2020 Feb; 11(2):. PubMed ID: 32102395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera.
    Licausi F; Giorgi FM; Zenoni S; Osti F; Pezzotti M; Perata P
    BMC Genomics; 2010 Dec; 11():719. PubMed ID: 21171999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the defense-related gene
    Zhang Y; Yao JL; Feng H; Jiang J; Fan X; Jia YF; Wang R; Liu C
    Hereditas; 2019; 156():14. PubMed ID: 31057347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VviERF6Ls: an expanded clade in Vitis responds transcriptionally to abiotic and biotic stresses and berry development.
    Toups HS; Cochetel N; Gray D; Cramer GR
    BMC Genomics; 2020 Jul; 21(1):472. PubMed ID: 32646368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA-Sequencing Reveals Biological Networks during Table Grapevine ('Fujiminori') Fruit Development.
    Shangguan L; Mu Q; Fang X; Zhang K; Jia H; Li X; Bao Y; Fang J
    PLoS One; 2017; 12(1):e0170571. PubMed ID: 28118385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses.
    Vannozzi A; Dry IB; Fasoli M; Zenoni S; Lucchin M
    BMC Plant Biol; 2012 Aug; 12():130. PubMed ID: 22863370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative transcriptome analyses between cultivated and wild grapes reveal conservation of expressed genes but extensive rewiring of co-expression networks.
    Fajardo TVM; Quecini V
    Plant Mol Biol; 2021 May; 106(1-2):1-20. PubMed ID: 33538951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification, characterization, and expression analysis of calmodulin and calmodulin-like genes in grapevine (Vitis vinifera) reveal likely roles in stress responses.
    Vandelle E; Vannozzi A; Wong D; Danzi D; Digby AM; Dal Santo S; Astegno A
    Plant Physiol Biochem; 2018 Aug; 129():221-237. PubMed ID: 29908490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression profiling in susceptible interaction of grapevine with its fungal pathogen Eutypa lata: extending MapMan ontology for grapevine.
    Rotter A; Camps C; Lohse M; Kappel C; Pilati S; Hren M; Stitt M; Coutos-Thévenot P; Moser C; Usadel B; Delrot S; Gruden K
    BMC Plant Biol; 2009 Aug; 9():104. PubMed ID: 19656401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome Sequence Analysis Elaborates a Complex Defensive Mechanism of Grapevine (
    Guan L; Haider MS; Khan N; Nasim M; Jiu S; Fiaz M; Zhu X; Zhang K; Fang J
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30545146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of grapevine whole-genome gene predictions, functional annotation, categorization and integration of the predicted gene sequences.
    Grimplet J; Van Hemert J; Carbonell-Bejerano P; Díaz-Riquelme J; Dickerson J; Fennell A; Pezzotti M; Martínez-Zapater JM
    BMC Res Notes; 2012 May; 5():213. PubMed ID: 22554261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aggregated gene co-expression networks predict transcription factor regulatory landscapes in grapevine.
    Orduña L; Santiago A; Navarro-Payá D; Zhang C; Wong DCJ; Matus JT
    J Exp Bot; 2023 Nov; 74(21):6522-6540. PubMed ID: 37668374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays.
    Martin DM; Aubourg S; Schouwey MB; Daviet L; Schalk M; Toub O; Lund ST; Bohlmann J
    BMC Plant Biol; 2010 Oct; 10():226. PubMed ID: 20964856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance.
    Das P; Majumder AL
    Funct Integr Genomics; 2019 Jan; 19(1):61-73. PubMed ID: 30046943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.