BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32266646)

  • 41. Inferring RPW8-NLRs's evolution patterns in seed plants: case study in Vitis vinifera.
    Andolfo G; Villano C; Errico A; Frusciante L; Carputo D; Aversano R; Ercolano MR
    Planta; 2019 Dec; 251(1):32. PubMed ID: 31823009
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome-wide identification and analysis of B-BOX gene family in grapevine reveal its potential functions in berry development.
    Wei H; Wang P; Chen J; Li C; Wang Y; Yuan Y; Fang J; Leng X
    BMC Plant Biol; 2020 Feb; 20(1):72. PubMed ID: 32054455
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Co-evolution between Grapevine rupestris stem pitting-associated virus and Vitis vinifera L. leads to decreased defence responses and increased transcription of genes related to photosynthesis.
    Gambino G; Cuozzo D; Fasoli M; Pagliarani C; Vitali M; Boccacci P; Pezzotti M; Mannini F
    J Exp Bot; 2012 Oct; 63(16):5919-33. PubMed ID: 22987838
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The grapevine gene nomenclature system.
    Grimplet J; Adam-Blondon AF; Bert PF; Bitz O; Cantu D; Davies C; Delrot S; Pezzotti M; Rombauts S; Cramer GR
    BMC Genomics; 2014 Dec; 15(1):1077. PubMed ID: 25481684
    [TBL] [Abstract][Full Text] [Related]  

  • 45. VitisNet: "Omics" integration through grapevine molecular networks.
    Grimplet J; Cramer GR; Dickerson JA; Mathiason K; Van Hemert J; Fennell AY
    PLoS One; 2009 Dec; 4(12):e8365. PubMed ID: 20027228
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genome-wide characterisation and expression profile of the grapevine ATL ubiquitin ligase family reveal biotic and abiotic stress-responsive and development-related members.
    Ariani P; Regaiolo A; Lovato A; Giorgetti A; Porceddu A; Camiolo S; Wong D; Castellarin S; Vandelle E; Polverari A
    Sci Rep; 2016 Dec; 6():38260. PubMed ID: 27910910
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genetic, epigenetic and genomic effects on variation of gene expression among grape varieties.
    Magris G; Di Gaspero G; Marroni F; Zenoni S; Tornielli GB; Celii M; De Paoli E; Pezzotti M; Conte F; Paci P; Morgante M
    Plant J; 2019 Sep; 99(5):895-909. PubMed ID: 31034726
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transcriptomics of the grape berry shrivel ripening disorder.
    Savoi S; Herrera JC; Forneck A; Griesser M
    Plant Mol Biol; 2019 Jun; 100(3):285-301. PubMed ID: 30941542
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Direct regulation of shikimate, early phenylpropanoid, and stilbenoid pathways by Subgroup 2 R2R3-MYBs in grapevine.
    Orduña L; Li M; Navarro-Payá D; Zhang C; Santiago A; Romero P; Ramšak Ž; Magon G; Höll J; Merz P; Gruden K; Vannozzi A; Cantu D; Bogs J; Wong DCJ; Huang SC; Matus JT
    Plant J; 2022 Apr; 110(2):529-547. PubMed ID: 35092714
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome.
    Rienth M; Torregrosa L; Sarah G; Ardisson M; Brillouet JM; Romieu C
    BMC Plant Biol; 2016 Jul; 16(1):164. PubMed ID: 27439426
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genome-Wide Characterization and Expression Profiling of GASA Genes during Different Stages of Seed Development in Grapevine (
    Ahmad B; Yao J; Zhang S; Li X; Zhang X; Yadav V; Wang X
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32041336
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The genome of Shanputao (Vitis amurensis) provides a new insight into cold tolerance of grapevine.
    Wang Y; Xin H; Fan P; Zhang J; Liu Y; Dong Y; Wang Z; Yang Y; Zhang Q; Ming R; Zhong GY; Li S; Liang Z
    Plant J; 2021 Mar; 105(6):1495-1506. PubMed ID: 33300184
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera.
    Wang L; Zhu W; Fang L; Sun X; Su L; Liang Z; Wang N; Londo JP; Li S; Xin H
    BMC Plant Biol; 2014 Apr; 14():103. PubMed ID: 24755338
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A functional EDS1 ortholog is differentially regulated in powdery mildew resistant and susceptible grapevines and complements an Arabidopsis eds1 mutant.
    Gao F; Shu X; Ali MB; Howard S; Li N; Winterhagen P; Qiu W; Gassmann W
    Planta; 2010 Apr; 231(5):1037-47. PubMed ID: 20145949
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genome-wide analysis of autophagy-related genes (ARGs) in grapevine and plant tolerance to copper stress.
    Shangguan L; Fang X; Chen L; Cui L; Fang J
    Planta; 2018 Jun; 247(6):1449-1463. PubMed ID: 29541879
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The LATERAL ORGAN BOUNDARIES Domain gene family in grapevine: genome-wide characterization and expression analyses during developmental processes and stress responses.
    Grimplet J; Pimentel D; Agudelo-Romero P; Martinez-Zapater JM; Fortes AM
    Sci Rep; 2017 Nov; 7(1):15968. PubMed ID: 29162903
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots.
    Henderson SW; Baumann U; Blackmore DH; Walker AR; Walker RR; Gilliham M
    BMC Plant Biol; 2014 Oct; 14():273. PubMed ID: 25344057
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Timing and Order of the Molecular Events Marking the Onset of Berry Ripening in Grapevine.
    Fasoli M; Richter CL; Zenoni S; Bertini E; Vitulo N; Dal Santo S; Dokoozlian N; Pezzotti M; Tornielli GB
    Plant Physiol; 2018 Nov; 178(3):1187-1206. PubMed ID: 30224433
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Small RNA and degradome deep sequencing reveal respective roles of cold-related microRNAs across Chinese wild grapevine and cultivated grapevine.
    Wang P; Yang Y; Shi H; Wang Y; Ren F
    BMC Genomics; 2019 Oct; 20(1):740. PubMed ID: 31615400
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Maximizing capture of gene co-expression relationships through pre-clustering of input expression samples: an Arabidopsis case study.
    Feltus FA; Ficklin SP; Gibson SM; Smith MC
    BMC Syst Biol; 2013 Jun; 7():44. PubMed ID: 23738693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.