These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 32266671)
1. Synergistic Delamination Toughening of Glass Fiber-Aluminum Laminates by Surface Treatment and Graphene Oxide Interleaf. Wu X; Ning H; Liu Y; Hu N; Liu F; Wang S; Huang K; Jiao Y; Weng S; Liu Q; Wu L Nanoscale Res Lett; 2020 Apr; 15(1):74. PubMed ID: 32266671 [TBL] [Abstract][Full Text] [Related]
2. Improvement of the mode II interface fracture toughness of glass fiber reinforced plastics/aluminum laminates through vapor grown carbon fiber interleaves. Ning H; Li Y; Hu N; Cao Y; Yan C; Azuma T; Peng X; Wu L; Li J; Li L Sci Technol Adv Mater; 2014 Jun; 15(3):035004. PubMed ID: 27877680 [TBL] [Abstract][Full Text] [Related]
3. Effect of cellulose nanofibers on the fracture toughness mode II of glass fiber/epoxy composite laminates. Moustapha Sarr M; Kosaka T Heliyon; 2023 Feb; 9(2):e13203. PubMed ID: 36747534 [TBL] [Abstract][Full Text] [Related]
4. Improving Interlaminar Fracture Toughness and Impact Performance of Carbon Fiber/Epoxy Laminated Composite by Using Thermoplastic Fibers. Chen L; Wu LW; Jiang Q; Tian D; Zhong Z; Wang Y; Fu HJ Molecules; 2019 Sep; 24(18):. PubMed ID: 31527461 [TBL] [Abstract][Full Text] [Related]
5. Is Graphene Always Effective in Reinforcing Composites? The Case of Highly Graphene-Modified Thermoplastic Nanofibers and Their Unfortunate Application in CFRP Laminates. Maccaferri E; Mazzocchetti L; Benelli T; Ortolani J; Brugo TM; Zucchelli A; Giorgini L Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559932 [TBL] [Abstract][Full Text] [Related]
8. Interlaminar Mechanical Properties and Toughening Mechanism of Highly Thermally Stable Composite Modified by Polyacrylonitrile Nanofiber Films. Ma Y; Zhuang Y; Li C; Luo C; Shen X Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406222 [TBL] [Abstract][Full Text] [Related]
9. Improved Interlaminar Properties of Glass Fiber/Epoxy Laminates by the Synergic Modification of Soft and Rigid Particles. Liu J; Tian S; Ren J; Huang J; Luo L; Du B; Zhang T Materials (Basel); 2023 Oct; 16(19):. PubMed ID: 37834749 [TBL] [Abstract][Full Text] [Related]
10. A Review of Electrospun Nanofiber Interleaves for Interlaminar Toughening of Composite Laminates. Mahato B; Lomov SV; Shiverskii A; Owais M; Abaimov SG Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987161 [TBL] [Abstract][Full Text] [Related]
11. Effect of Plasma-Treatment of Interleaved Thermoplastic Films on Delamination in Interlayer Fibre Hybrid Composite Laminates. Marino SG; Mayer F; Bismarck A; Czél G Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33260510 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and Thermo-Electro and Mechanical Properties Evaluation of Helical Multiwall Carbon Nanotube-Carbon Fiber/Epoxy Composite Laminates. Ali A; Andriyana A; Hassan SBA; Ang BC Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33947012 [TBL] [Abstract][Full Text] [Related]
13. Applying Acoustic Emission Technique for Detecting Various Damages Occurred in PCL Nanomodified Composite Laminates. Gholizadeh A; Mansouri H; Nikbakht A; Saghafi H; Fotouhi M Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771237 [TBL] [Abstract][Full Text] [Related]
14. Rubbery-Modified CFRPs with Improved Mode I Fracture Toughness: Effect of Nanofibrous Mat Grammage and Positioning on Tanδ Behaviour. Maccaferri E; Mazzocchetti L; Benelli T; Brugo TM; Zucchelli A; Giorgini L Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34207669 [TBL] [Abstract][Full Text] [Related]
15. Characterization of Mode I and Mode II Interlaminar Fracture Toughness in CNT-Enhanced CFRP under Various Temperature and Loading Rates. Yenigun B; Chaudhry MS; Gkouti E; Czekanski A Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299632 [TBL] [Abstract][Full Text] [Related]
16. A Preliminary Study of the Influence of Graphene Nanoplatelet Specific Surface Area on the Interlaminar Fracture Properties of Carbon Fiber/Epoxy Composites. Zafeiropoulou K; Kostagiannakopoulou C; Sotiriadis G; Kostopoulos V Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33371253 [TBL] [Abstract][Full Text] [Related]
17. Effect of Interlaminar Toughness on the Residual Compressive Capacity of Carbon Fiber Laminates with Different Types of Delamination. Zhang Y; Cai D; Hu Y; Zhang N; Peng J Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080639 [TBL] [Abstract][Full Text] [Related]
18. Interlaminar Fracture Behavior of Carbon Fiber/Polyimide Composites Toughened by Interleaving Thermoplastic Polyimide Fiber Veils. Lan B; Liu Y; Mo S; He M; Zhai L; Fan L Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065579 [TBL] [Abstract][Full Text] [Related]
19. Maximizing Interlaminar Fracture Toughness in Bidirectional GFRP through Controlled CNT Heterogeneous Toughening. Zhao H; Zhang Y; Ou Y; Wu L; Li J; Yao X; Yang X; Mao D Polymers (Basel); 2024 Apr; 16(7):. PubMed ID: 38611269 [TBL] [Abstract][Full Text] [Related]
20. Influence of Particle Size on Toughening Mechanisms of Layered Silicates in CFRP. Hutschreuther J; Kunz R; Breu J; Altstädt V Materials (Basel); 2020 May; 13(10):. PubMed ID: 32455977 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]