BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 32266770)

  • 1. In Situ Electropolymerization Enables Ultrafast Long Cycle Life and High-Voltage Organic Cathodes for Lithium Batteries.
    Zhao C; Chen Z; Wang W; Xiong P; Li B; Li M; Yang J; Xu Y
    Angew Chem Int Ed Engl; 2020 Jul; 59(29):11992-11998. PubMed ID: 32266770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries.
    Song Z; Qian Y; Zhang T; Otani M; Zhou H
    Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Performance Poly(1-naphthylamine)/Mesoporous Carbon Cathode for Lithium-Ion Batteries with Ultralong Cycle Life of 45000 Cycles at -15 °C.
    Yang J; Zhao X; Yang J; Xu Y; Li Y
    Adv Sci (Weinh); 2023 Aug; 10(23):e2302490. PubMed ID: 37300359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of Organic Cathodes by a Temperature-Induced Effect Enabling Higher Energy and Excellent Cyclability.
    Feng X; Chen X; Ren B; Wu X; Huang X; Ding R; Sun X; Tan S; Liu E; Gao P
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7178-7187. PubMed ID: 33538571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile Synthesis of Polyphenothiazine as a High-Performance p-Type Cathode for Rechargeable Lithium Batteries.
    Wang X; Li G; Han Y; Wang F; Chu J; Cai T; Wang B; Song Z
    ChemSusChem; 2021 Aug; 14(15):3174-3181. PubMed ID: 34101379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electropolymerization of Donor-Acceptor Conjugated Polymer for Efficient Dual-Ion Storage.
    Chen X; Zhang W; Zhang C; Guo Y; Yu A; Mei S; Yao CJ
    Adv Sci (Weinh); 2024 Jun; 11(23):e2310239. PubMed ID: 38582519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Situ Electrochemical Synthesis of Novel Lithium-Rich Organic Cathodes for All-Organic Li-Ion Full Batteries.
    Hu Y; Tang W; Yu Q; Yang C; Fan C
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32987-32993. PubMed ID: 31429536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyimide@Ketjenblack Composite: A Porous Organic Cathode for Fast Rechargeable Potassium-Ion Batteries.
    Zhang C; Xu Y; He K; Dong Y; Zhao H; Medenbach L; Wu Y; Balducci A; Hannappel T; Lei Y
    Small; 2020 Sep; 16(38):e2002953. PubMed ID: 32815290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Naphthoquinone-Based Composite Cathodes for Aqueous Rechargeable Zinc-Ion Batteries.
    Kumankuma-Sarpong J; Tang S; Guo W; Fu Y
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4084-4092. PubMed ID: 33459008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anthraquinone-Based Oligomer as a Long Cycle-Life Organic Electrode Material for Use in Rechargeable Batteries.
    Yao M; Sano H; Ando H; Kiyobayashi T; Takeichi N
    Chemphyschem; 2019 Apr; 20(7):967-971. PubMed ID: 30775839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulating Electrostatic Interaction between Hydrofluoroethers and Carbonyl Cathodes toward Highly Stable Lithium-Organic Batteries.
    Lu Y; Yang Z; Zhang Q; Xie W; Chen J
    J Am Chem Soc; 2024 Jan; 146(1):1100-1108. PubMed ID: 38127285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries.
    Nayak PK; Levi E; Grinblat J; Levi M; Markovsky B; Munichandraiah N; Sun YK; Aurbach D
    ChemSusChem; 2016 Sep; 9(17):2404-13. PubMed ID: 27530465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soluble Organic Cathodes Enable Long Cycle Life, High Rate, and Wide-Temperature Lithium-Ion Batteries.
    Li M; Yang J; Shi Y; Chen Z; Bai P; Su H; Xiong P; Cheng M; Zhao J; Xu Y
    Adv Mater; 2022 Feb; 34(5):e2107226. PubMed ID: 34796556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Design of Naphthol Groups Functionalized Bipolar Polymer Cathodes for High Performance Alkali-Ion Batteries.
    Kim T; Lee T; Yoon YR; Heo WS; Chae S; Kim JW; Kim BK; Kim SY; Lee J; Lee JH
    Small; 2024 Mar; ():e2400333. PubMed ID: 38528427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are Redox-Active Organic Small Molecules Applicable for High-Voltage (>4 V) Lithium-Ion Battery Cathodes?
    Katsuyama Y; Kobayashi H; Iwase K; Gambe Y; Honma I
    Adv Sci (Weinh); 2022 Apr; 9(12):e2200187. PubMed ID: 35266645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Crystalline, 2D Polyarylimide Cathode for Ultrastable and Ultrafast Li Storage.
    Wang G; Chandrasekhar N; Biswal BP; Becker D; Paasch S; Brunner E; Addicoat M; Yu M; Berger R; Feng X
    Adv Mater; 2019 Jul; 31(28):e1901478. PubMed ID: 31099072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of Arylene Ether-Type Hyperbranched Poly(triphenylamine) for Lithium Battery Cathodes.
    Kang I; Lee T; Yoon YR; Kim JW; Kim BK; Lee J; Lee JH; Kim SY
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2,3-diaminophenazine as a high-rate rechargeable aqueous zinc-ion batteries cathode.
    Liang J; Tang M; Cheng L; Zhu Q; Ji R; Liu X; Zhang Q; Wang H; Liu Z
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1262-1268. PubMed ID: 34571310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.