BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 32266794)

  • 1. Applicability of free drug hypothesis to drugs with good membrane permeability that are not efflux transporter substrates: A microdialysis study in rats.
    Chen C; Zhou H; Guan C; Zhang H; Li Y; Jiang X; Dong Z; Tao Y; Du J; Wang S; Zhang T; Du N; Guo J; Wu Y; Song Z; Luan H; Wang Y; Du H; Zhang S; Li C; Chang H; Wang T
    Pharmacol Res Perspect; 2020 Apr; 8(2):e00575. PubMed ID: 32266794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and Validation of Canine P-Glycoprotein-Deficient MDCK II Cell Lines for Efflux Substrate Screening.
    Ye D; Harder A; Fang Z; Weinheimer M; Laplanche L; Mezler M
    Pharm Res; 2020 Sep; 37(10):194. PubMed ID: 32918191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utility of cerebrospinal fluid drug concentration as a surrogate for unbound brain concentration in nonhuman primates.
    Nagaya Y; Nozaki Y; Kobayashi K; Takenaka O; Nakatani Y; Kusano K; Yoshimura T; Kusuhara H
    Drug Metab Pharmacokinet; 2014; 29(5):419-26. PubMed ID: 24806821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of cassette dosing approach to examine the effects of P-glycoprotein on the brain and cerebrospinal fluid concentrations in wild-type and P-glycoprotein knockout rats.
    Liu X; Cheong J; Ding X; Deshmukh G
    Drug Metab Dispos; 2014 Apr; 42(4):482-91. PubMed ID: 24398459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative investigation of the brain-to-cerebrospinal fluid unbound drug concentration ratio under steady-state conditions in rats using a pharmacokinetic model and scaling factors for active efflux transporters.
    Kodaira H; Kusuhara H; Fuse E; Ushiki J; Sugiyama Y
    Drug Metab Dispos; 2014 Jun; 42(6):983-9. PubMed ID: 24644297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of membrane transport activity and cell metabolism on the unbound drug concentrations in the skeletal muscle and liver of drugs: A microdialysis study in rats.
    Wang S; Chen C; Guan C; Qiu L; Zhang L; Zhang S; Zhou H; Du H; Li C; Wu Y; Chang H; Wang T
    Pharmacol Res Perspect; 2021 Oct; 9(5):e00879. PubMed ID: 34628723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of utility of cerebrospinal fluid drug concentration as a surrogate for interstitial fluid concentration using microdialysis coupled with cisternal cerebrospinal fluid sampling in wild-type and Mdr1a(-/-) rats.
    Nagaya Y; Nozaki Y; Takenaka O; Watari R; Kusano K; Yoshimura T; Kusuhara H
    Drug Metab Pharmacokinet; 2016 Feb; 31(1):57-66. PubMed ID: 26830080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Drug Transport in MDCKII-Wild Type, MDCKII-MDR1, MDCKII-BCRP and Caco-2 Cell Lines.
    Mukkavilli R; Jadhav G; Vangala S
    Curr Pharm Biotechnol; 2017; 18(14):1151-1158. PubMed ID: 29521222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Central nervous system pharmacokinetics of the Mdr1 P-glycoprotein substrate CP-615,003: intersite differences and implications for human receptor occupancy projections from cerebrospinal fluid exposures.
    Venkatakrishnan K; Tseng E; Nelson FR; Rollema H; French JL; Kaplan IV; Horner WE; Gibbs MA
    Drug Metab Dispos; 2007 Aug; 35(8):1341-9. PubMed ID: 17470526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between passive permeability, efflux, and predictability of clearance from in vitro metabolic intrinsic clearance.
    Huang L; Berry L; Ganga S; Janosky B; Chen A; Roberts J; Colletti AE; Lin MH
    Drug Metab Dispos; 2010 Feb; 38(2):223-31. PubMed ID: 19875499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unbound drug concentration in brain homogenate and cerebral spinal fluid at steady state as a surrogate for unbound concentration in brain interstitial fluid.
    Liu X; Van Natta K; Yeo H; Vilenski O; Weller PE; Worboys PD; Monshouwer M
    Drug Metab Dispos; 2009 Apr; 37(4):787-93. PubMed ID: 19116265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative evaluation of the impact of active efflux by p-glycoprotein and breast cancer resistance protein at the blood-brain barrier on the predictability of the unbound concentrations of drugs in the brain using cerebrospinal fluid concentration as a surrogate.
    Kodaira H; Kusuhara H; Fujita T; Ushiki J; Fuse E; Sugiyama Y
    J Pharmacol Exp Ther; 2011 Dec; 339(3):935-44. PubMed ID: 21934030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cocktail-Dosing Microdialysis Study to Simultaneously Assess Delivery of Multiple Organic-Cationic Drugs to the Brain.
    Kitamura A; Okura T; Higuchi K; Deguchi Y
    J Pharm Sci; 2016 Feb; 105(2):935-940. PubMed ID: 26554532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Models to predict unbound intracellular drug concentrations in the presence of transporters.
    Korzekwa KR; Nagar S; Tucker J; Weiskircher EA; Bhoopathy S; Hidalgo IJ
    Drug Metab Dispos; 2012 May; 40(5):865-76. PubMed ID: 22279052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CSF as a surrogate for assessing CNS exposure: an industrial perspective.
    Lin JH
    Curr Drug Metab; 2008 Jan; 9(1):46-59. PubMed ID: 18220571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of cassette dosing to enhance the throughput of rat brain microdialysis studies.
    Deshmukh G; Sun K; Liederer BM; Ding X; Liu X
    Drug Metab Dispos; 2015 Jul; 43(7):1123-8. PubMed ID: 25943358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of MDR1-overexpressing cell lines to derive a quantitative prediction approach for brain disposition using in vitro efflux activities.
    Sato S; Tohyama K; Kosugi Y
    Eur J Pharm Sci; 2020 Jan; 142():105119. PubMed ID: 31682973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vitro Interactions of Epacadostat and its Major Metabolites with Human Efflux and Uptake Transporters: Implications for Pharmacokinetics and Drug Interactions.
    Zhang Q; Zhang Y; Boer J; Shi JG; Hu P; Diamond S; Yeleswaram S
    Drug Metab Dispos; 2017 Jun; 45(6):612-623. PubMed ID: 28283500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood-brain barrier (BBB) pharmacoproteomics: reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice.
    Uchida Y; Ohtsuki S; Kamiie J; Terasaki T
    J Pharmacol Exp Ther; 2011 Nov; 339(2):579-88. PubMed ID: 21828264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of Transporter and Receptor Proteins in Dog Brain Capillaries and Choroid Plexus: Relevance for the Distribution in Brain and CSF of Selected BCRP and P-gp Substrates.
    Braun C; Sakamoto A; Fuchs H; Ishiguro N; Suzuki S; Cui Y; Klinder K; Watanabe M; Terasaki T; Sauer A
    Mol Pharm; 2017 Oct; 14(10):3436-3447. PubMed ID: 28880093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.