These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 32267196)

  • 1. Lack of cortical or Ia-afferent spinal pathway involvement in muscle force loss after passive static stretching.
    Pulverenti TS; Trajano GS; Walsh A; Kirk BJC; Blazevich AJ
    J Neurophysiol; 2020 May; 123(5):1896-1906. PubMed ID: 32267196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced corticospinal responses in older compared with younger adults during submaximal isometric, shortening, and lengthening contractions.
    Škarabot J; Ansdell P; Brownstein CG; Hicks KM; Howatson G; Goodall S; Durbaba R
    J Appl Physiol (1985); 2019 Apr; 126(4):1015-1031. PubMed ID: 30730812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The loss of muscle force production after muscle stretching is not accompanied by altered corticospinal excitability.
    Pulverenti TS; Trajano GS; Kirk BJC; Blazevich AJ
    Eur J Appl Physiol; 2019 Oct; 119(10):2287-2299. PubMed ID: 31456049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plantar flexor muscle stretching depresses the soleus late response but not tendon tap reflexes.
    Pulverenti TS; Trajano GS; Kirk BJC; Bochkezanian V; Blazevich AJ
    Eur J Neurosci; 2021 May; 53(9):3185-3198. PubMed ID: 33675055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Static stretch and dynamic muscle activity induce acute similar increase in corticospinal excitability.
    Opplert J; Paizis C; Papitsa A; Blazevich AJ; Cometti C; Babault N
    PLoS One; 2020; 15(3):e0230388. PubMed ID: 32191755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of decreased motoneurone excitation during passive muscle stretching.
    Guissard N; Duchateau J; Hainaut K
    Exp Brain Res; 2001 Mar; 137(2):163-9. PubMed ID: 11315544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitatory drive to the alpha-motoneuron pool during a fatiguing submaximal contraction in man.
    Löscher WN; Cresswell AG; Thorstensson A
    J Physiol; 1996 Feb; 491 ( Pt 1)(Pt 1):271-80. PubMed ID: 9011619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of reflexive activation of motor units on torque development during electrically-evoked contractions of the triceps surae muscle.
    Vitry F; Martin A; Deley G; Papaiordanidou M
    J Appl Physiol (1985); 2019 Feb; 126(2):386-392. PubMed ID: 30212303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific modulation of spinal and cortical excitabilities during lengthening and shortening submaximal and maximal contractions in plantar flexor muscles.
    Duclay J; Pasquet B; Martin A; Duchateau J
    J Appl Physiol (1985); 2014 Dec; 117(12):1440-50. PubMed ID: 25324516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural adaptations to submaximal isokinetic eccentric strength training.
    Barrué-Belou S; Amarantini D; Marque P; Duclay J
    Eur J Appl Physiol; 2016 May; 116(5):1021-30. PubMed ID: 27030127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of forearm position and contraction intensity on cortical and spinal excitability during a submaximal force steadiness task of the elbow flexors.
    Yacyshyn AF; Kuzyk S; Jakobi JM; McNeil CJ
    J Neurophysiol; 2020 Feb; 123(2):522-528. PubMed ID: 31774348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Central contributions to torque depression: an antagonist perspective.
    Sypkes CT; Contento VS; Bent LR; McNeil CJ; Power GA
    Exp Brain Res; 2019 Feb; 237(2):443-452. PubMed ID: 30456694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of transmission in the corticospinal and group Ia afferent pathways to soleus motoneurons during bicycling.
    Pyndt HS; Nielsen JB
    J Neurophysiol; 2003 Jan; 89(1):304-14. PubMed ID: 12522181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of spinal excitability following neuromuscular electrical stimulation superimposed to voluntary contraction.
    Borzuola R; Labanca L; Macaluso A; Laudani L
    Eur J Appl Physiol; 2020 Sep; 120(9):2105-2113. PubMed ID: 32676751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supraspinal Control of Recurrent Inhibition during Anisometric Contractions.
    Barrué-Belou S; Marque P; Duclay J
    Med Sci Sports Exerc; 2019 Nov; 51(11):2357-2365. PubMed ID: 31107836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central nervous adaptations following 1 wk of wrist and hand immobilization.
    Lundbye-Jensen J; Nielsen JB
    J Appl Physiol (1985); 2008 Jul; 105(1):139-51. PubMed ID: 18450985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corticospinal excitability and reflex modulation in a contralateral non-stretched muscle following unilateral stretching.
    Anvar SH; Granacher U; Konrad A; Alizadeh S; Culleton R; Edwards C; Goudini R; Behm DG
    Eur J Appl Physiol; 2023 Aug; 123(8):1837-1850. PubMed ID: 37072505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute effects of Achilles tendon vibration on soleus and tibialis anterior spinal and cortical excitability.
    Lapole T; Deroussen F; Pérot C; Petitjean M
    Appl Physiol Nutr Metab; 2012 Aug; 37(4):657-63. PubMed ID: 22568876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Task-specific depression of the soleus H-reflex after cocontraction training of antagonistic ankle muscles.
    Perez MA; Lundbye-Jensen J; Nielsen JB
    J Neurophysiol; 2007 Dec; 98(6):3677-87. PubMed ID: 17942616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of central vs. peripheral factors to the force loss induced by passive stretch of the human plantar flexors.
    Trajano GS; Seitz L; Nosaka K; Blazevich AJ
    J Appl Physiol (1985); 2013 Jul; 115(2):212-8. PubMed ID: 23661620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.