BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 32267708)

  • 1. Interpreting
    Rudd ND; Reibarkh M; Fang R; Mittal S; Walsh PL; Brunskill APJ; Forrest WP
    Mol Pharm; 2020 May; 17(5):1734-1747. PubMed ID: 32267708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing in Vitro Release Kinetics of Long-Acting Injectable Nanosuspensions via Flow-NMR Spectroscopy.
    Rudd ND; Helmy R; Dormer PG; Williamson RT; Wuelfing WP; Walsh PL; Reibarkh M; Forrest WP
    Mol Pharm; 2020 Feb; 17(2):530-540. PubMed ID: 31895571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. USP Apparatus 4: a Valuable In Vitro Tool to Enable Formulation Development of Long-Acting Parenteral (LAP) Nanosuspension Formulations of Poorly Water-Soluble Compounds.
    Forrest WP; Reuter KG; Shah V; Kazakevich I; Heslinga M; Dudhat S; Patel S; Neri C; Mao Y
    AAPS PharmSciTech; 2018 Jan; 19(1):413-424. PubMed ID: 28755052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of in vitro-in vivo correlations for long-acting injectable suspensions.
    Bao Q; Wang X; Wan B; Zou Y; Wang Y; Burgess DJ
    Int J Pharm; 2023 Mar; 634():122642. PubMed ID: 36709013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Formulation Parameters on In Vitro Release from Long-Acting Injectable Suspensions.
    Bao Q; Zou Y; Wang Y; Choi S; Burgess DJ
    AAPS J; 2021 Mar; 23(2):42. PubMed ID: 33709196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cefdinir nanosuspension for improved oral bioavailability by media milling technique: formulation, characterization and in vitro-in vivo evaluations.
    Sawant KK; Patel MH; Patel K
    Drug Dev Ind Pharm; 2016; 42(5):758-68. PubMed ID: 26548349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro Dissolution Model Can Predict the in Vivo Taste Masking Performance of Coated Multiparticulates.
    Keeley A; Teo M; Ali Z; Frost J; Ghimire M; Rajabi-Siahboomi A; Orlu M; Tuleu C
    Mol Pharm; 2019 May; 16(5):2095-2105. PubMed ID: 30900905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing Drug Release from Manipulated Abuse Deterrent Formulations.
    Feng X; Zidan A; Kamal NS; Xu X; Sun D; Walenga R; Boyce H; Cruz CN; Ashraf M
    AAPS PharmSciTech; 2020 Jan; 21(2):40. PubMed ID: 31897805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanosuspensions as delivery system for gambogenic acid: characterization and in vitro/in vivo evaluation.
    Yuan H; Li X; Zhang C; Pan W; Liang Y; Chen Y; Chen W; Liu L; Wang X
    Drug Deliv; 2016 Oct; 23(8):2772-2779. PubMed ID: 26292058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is the combination of cellulosic polymers and anionic surfactants a good strategy for ensuring physical stability of BCS Class II drug nanosuspensions?
    Bilgili E; Li M; Afolabi A
    Pharm Dev Technol; 2016; 21(4):499-510. PubMed ID: 25774989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerated and Biopredictive In Vitro Release Testing Strategy for Single Agent and Combination Long-Acting Injectables.
    Jain KMH; Ho T; Hoe S; Wan B; Muthal A; Subramanian R; Foti C
    J Pharm Sci; 2024 Jul; 113(7):1885-1897. PubMed ID: 38369022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Stabilization and Dissolution Rate Improvement of Amorphous Compacts with Thin Polymer Coatings: Can We Have It All?
    Novakovic D; Peltonen L; Isomäki A; Fraser-Miller SJ; Nielsen LH; Laaksonen T; Strachan CJ
    Mol Pharm; 2020 Apr; 17(4):1248-1260. PubMed ID: 32027513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an amorphous nanosuspension by sonoprecipitation-formulation and process optimization using design of experiment methodology.
    Gajera BY; Shah DA; Dave RH
    Int J Pharm; 2019 Mar; 559():348-359. PubMed ID: 30721724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of fast dissolving pullulan films containing BCS class II drug nanoparticles for bioavailability enhancement.
    Krull SM; Ma Z; Li M; Davé RN; Bilgili E
    Drug Dev Ind Pharm; 2016; 42(7):1073-85. PubMed ID: 26567632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of azithromycin nanosuspensions by reactive precipitation method.
    Hou CD; Wang JX; Le Y; Zou HK; Zhao H
    Drug Dev Ind Pharm; 2012 Jul; 38(7):848-54. PubMed ID: 22092042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing dissolution testing methodologies for extended-release oral dosage forms with supersaturating properties. Case example: Solid dispersion matrix of indomethacin.
    Tajiri T; Morita S; Sakamoto R; Mimura H; Ozaki Y; Reppas C; Kitamura S
    Int J Pharm; 2015 Jul; 490(1-2):368-74. PubMed ID: 26022889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Dissolution Medium pH and Simulated Gastrointestinal Contraction on Drug Release From Nifedipine Extended-Release Tablets.
    Gao Z; Ngo C; Ye W; Rodriguez JD; Keire D; Sun D; Wen H; Jiang W
    J Pharm Sci; 2019 Mar; 108(3):1189-1194. PubMed ID: 30343136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formulation and drying of miconazole and itraconazole nanosuspensions.
    Cerdeira AM; Mazzotti M; Gander B
    Int J Pharm; 2013 Feb; 443(1-2):209-20. PubMed ID: 23291552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melt milling as manufacturing method for solid crystalline suspensions.
    da Igreja P; Erve A; Thommes M
    Eur J Pharm Biopharm; 2021 Jan; 158():245-253. PubMed ID: 33253891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of the zeta potential of montmorillonite to achieve high active pharmaceutical ingredient nanoparticle loading and stabilization with optimum dissolution properties.
    Kumar A; Hodnett BK; Hudson S; Davern P
    Colloids Surf B Biointerfaces; 2020 Sep; 193():111120. PubMed ID: 32505995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.