These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32267709)

  • 1. Adapting the Electron Beam from SEM as a Quantitative Heating Source for Nanoscale Thermal Metrology.
    Yuan P; Wu JY; Ogletree DF; Urban JJ; Dames C; Ma Y
    Nano Lett; 2020 May; 20(5):3019-3029. PubMed ID: 32267709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A direct differential method for measuring thermal conductivity of thin films.
    Zeng Y; Marconnet A
    Rev Sci Instrum; 2017 Apr; 88(4):044901. PubMed ID: 28456238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Photoluminescence of Silicon Nitride-Based ZnO Thin Film Developed with RF Magnetron Sputtering].
    Chen JH; Yao WQ; Zhu YF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Feb; 37(2):391-3. PubMed ID: 30264967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-situ SEM microchip setup for electrochemical experiments with water based solutions.
    Jensen E; Købler C; Jensen PS; Mølhave K
    Ultramicroscopy; 2013 Jun; 129():63-9. PubMed ID: 23608087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure analysis of sputter-coated and ion-beam sputter-coated films: a comparative study.
    Kemmenoe BH; Bullock GR
    J Microsc; 1983 Nov; 132(Pt 2):153-63. PubMed ID: 6358510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable thermal conductivity of thin films of polycrystalline AlN by structural inhomogeneity and interfacial oxidation.
    Jaramillo-Fernandez J; Ordonez-Miranda J; Ollier E; Volz S
    Phys Chem Chem Phys; 2015 Mar; 17(12):8125-37. PubMed ID: 25729791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of SiN
    Wang FH; Kuo HH; Yang CF; Liu MC
    Materials (Basel); 2014 Feb; 7(2):948-962. PubMed ID: 28788494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scanning Electron Thermal Absorbance Microscopy for Light Element Detection and Atomic Number Analysis.
    Lin CC; Wang SM; Chen BY; Chi CH; Chang IL; Chang CW
    Nano Lett; 2022 Apr; 22(7):2667-2673. PubMed ID: 35266397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the Thermal Conductivity Characteristics for Ultra-Thin Body FD SOI MOSFETs Based on Phonon Scattering Mechanisms.
    Zhang G; Lai J; Su Y; Li B; Li B; Bu J; Yang CF
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31443215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte carlo electron source model validation for an Elekta Precise linac.
    Ali OA; Willemse CA; Shaw W; O'Reilly FH; du Plessis FC
    Med Phys; 2011 May; 38(5):2366-73. PubMed ID: 21776771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of thermal diffusivity of Ti thin film by thermoreflectance and periodic heating technique.
    Matsui G; Kato H
    Rev Sci Instrum; 2011 Mar; 82(3):034905. PubMed ID: 21456782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal conductivity measurement and interface thermal resistance estimation using SiO2 thin film.
    Chien HC; Yao DJ; Huang MJ; Chang TY
    Rev Sci Instrum; 2008 May; 79(5):054902. PubMed ID: 18513085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoacoustic thermal characterization of low thermal diffusivity thin films.
    Herrmann K; Pech-May NW; Retsch M
    Photoacoustics; 2021 Jun; 22():100246. PubMed ID: 34094849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dark-field image contrast in transmission scanning electron microscopy: Effects of substrate thickness and detector collection angle.
    Woehl T; Keller R
    Ultramicroscopy; 2016 Dec; 171():166-176. PubMed ID: 27690347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron beam damage of epoxy resin films studied by scanning transmission X-ray spectromicroscopy.
    Zhang W; Melo LGA; Hitchcock AP; Bassim N
    Micron; 2019 May; 120():74-79. PubMed ID: 30802756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron thermal microscopy.
    Brintlinger T; Qi Y; Baloch KH; Goldhaber-Gordon D; Cumings J
    Nano Lett; 2008 Feb; 8(2):582-5. PubMed ID: 18229968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minimization of focused ion beam damage in nanostructured polymer thin films.
    Kim S; Jeong Park M; Balsara NP; Liu G; Minor AM
    Ultramicroscopy; 2011 Feb; 111(3):191-9. PubMed ID: 21333856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of range-energy relationships for low-energy electron beams in silicon and gallium nitride.
    Kurniawan O; Ong VK
    Scanning; 2007; 29(6):280-6. PubMed ID: 17957746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ observation of water in a fuel cell catalyst using scanning electron microscopy.
    Ueda S; Kobayashi Y; Koizumi S; Tsutsumi Y
    Microscopy (Oxf); 2015 Apr; 64(2):87-96. PubMed ID: 25430743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron-beam broadening in amorphous carbon films in low-energy scanning transmission electron microscopy.
    Drees H; Müller E; Dries M; Gerthsen D
    Ultramicroscopy; 2018 Feb; 185():65-71. PubMed ID: 29195139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.