These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32267858)

  • 1. Extracellular electrical conductivity property imaging by decomposition of high-frequency conductivity at Larmor-frequency using multi-b-value diffusion-weighted imaging.
    Lee MB; Jahng GH; Kim HJ; Woo EJ; Kwon OI
    PLoS One; 2020; 15(4):e0230903. PubMed ID: 32267858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-frequency dominant electrical conductivity imaging of in vivo human brain using high-frequency conductivity at Larmor-frequency and spherical mean diffusivity without external injection current.
    Jahng GH; Lee MB; Kim HJ; Je Woo E; Kwon OI
    Neuroimage; 2021 Jan; 225():117466. PubMed ID: 33075557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decomposition of high-frequency electrical conductivity into extracellular and intracellular compartments based on two-compartment model using low-to-high multi-b diffusion MRI.
    Lee MB; Kim HJ; Kwon OI
    Biomed Eng Online; 2021 Mar; 20(1):29. PubMed ID: 33766044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High frequency conductivity decomposition by solving physically constraint underdetermined inverse problem in human brain.
    Kwon OI; Lee MB; Jahng GH
    Sci Rep; 2023 Feb; 13(1):3273. PubMed ID: 36841894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic conductivity tensor by analyzing diffusion tensor for electrical brain stimulation (EBS).
    Lee MB; Kim YH; Kim HJ; Kwon OI
    Phys Med Biol; 2018 Dec; 63(24):24NT04. PubMed ID: 30523812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency-dependent conductivity contrast for tissue characterization using a dual-frequency range conductivity mapping magnetic resonance method.
    Kim DH; Chauhan M; Kim MO; Jeong WC; Kim HJ; Sersa I; Kwon OI; Woo EJ
    IEEE Trans Med Imaging; 2015 Feb; 34(2):507-13. PubMed ID: 25312916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous imaging of dual-frequency electrical conductivity using a combination of MREIT and MREPT.
    Kim HJ; Jeong WC; Sajib SZ; Kim MO; Kwon OI; Je Woo E; Kim DH
    Magn Reson Med; 2014 Jan; 71(1):200-8. PubMed ID: 23400804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.
    Sajib SZK; Katoch N; Kim HJ; Kwon OI; Woo EJ
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2505-2514. PubMed ID: 28767360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic resonance electrical properties tomography for small anomalies using boundary conditions: A simulation study.
    Lee J; Choi N; Seo JK; Kim DH
    Med Phys; 2017 Sep; 44(9):4773-4785. PubMed ID: 28508476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-frequency conductivity at Larmor-frequency in human brain using moving local window multilayer perceptron neural network.
    Lee MB; Jahng GH; Kim HJ; Kwon OI
    PLoS One; 2021; 16(5):e0251417. PubMed ID: 34014939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrodeless conductivity tensor imaging (CTI) using MRI: basic theory and animal experiments.
    Sajib SZK; Kwon OI; Kim HJ; Woo EJ
    Biomed Eng Lett; 2018 Aug; 8(3):273-282. PubMed ID: 30603211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Five Conductivity Tensor Models and Image Reconstruction Methods Using MRI.
    Katoch N; Choi BK; Park JA; Ko IO; Kim HJ
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34576970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conductivity Tensor Imaging of the Human Brain Using Water Mapping Techniques.
    Marino M; Cordero-Grande L; Mantini D; Ferrazzi G
    Front Neurosci; 2021; 15():694645. PubMed ID: 34393709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of conductivity tensor imaging using giant vesicle suspensions with different ion mobilities.
    Choi BK; Katoch N; Kim HJ; Park JA; Ko IO; Kwon OI; Woo EJ
    Biomed Eng Online; 2020 May; 19(1):35. PubMed ID: 32448134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of extracellular volume fraction using magnetic resonance-based conductivity tensor imaging.
    Choi BK; Katoch N; Park JA; Kim JW; Oh TI; Kim HJ; Woo EJ
    Front Physiol; 2023; 14():1132911. PubMed ID: 36875031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conductivity Tensor Imaging of In Vivo Human Brain and Experimental Validation Using Giant Vesicle Suspension.
    Katoch N; Choi BK; Sajib SZK; Lee E; Kim HJ; Kwon OI; Woo EJ
    IEEE Trans Med Imaging; 2019 Jul; 38(7):1569-1577. PubMed ID: 30507528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new method to derive white matter conductivity from diffusion tensor MRI.
    Wang K; Zhu S; Mueller BA; Lim KO; Liu Z; He B
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2481-6. PubMed ID: 18838374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropic conductivity tensor imaging for transcranial direct current stimulation (tDCS) using magnetic resonance diffusion tensor imaging (MR-DTI).
    Lee MB; Kim HJ; Woo EJ; Kwon OI
    PLoS One; 2018; 13(5):e0197063. PubMed ID: 29763453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Error analysis of nonconstant admittivity for MR-based electric property imaging.
    Seo JK; Kim MO; Lee J; Choi N; Woo EJ; Kim HJ; Kwon OI; Kim DH
    IEEE Trans Med Imaging; 2012 Feb; 31(2):430-7. PubMed ID: 21990329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic conductivity tensor imaging in MREIT using directional diffusion rate of water molecules.
    Kwon OI; Jeong WC; Sajib SZ; Kim HJ; Woo EJ
    Phys Med Biol; 2014 Jun; 59(12):2955-74. PubMed ID: 24841854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.