These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32268062)

  • 1.
    Anderson JS; Hernández G; LeMaster DM
    J Chem Theory Comput; 2020 May; 16(5):2896-2913. PubMed ID: 32268062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Bond Vector Autocorrelation Functions from Larmor Frequency-Selective Order Parameter Analysis of NMR Relaxation Data.
    Anderson JS; Hernández G; LeMaster DM
    J Chem Theory Comput; 2017 Jul; 13(7):3276-3289. PubMed ID: 28541675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Dynamics-Assisted Optimization of Protein NMR Relaxation Analysis.
    Anderson JS; Hernández G; LeMaster DM
    J Chem Theory Comput; 2022 Apr; 18(4):2091-2104. PubMed ID: 35245056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the ability of molecular dynamics force fields to recapitulate NMR derived protein side chain order parameters.
    O'Brien ES; Wand AJ; Sharp KA
    Protein Sci; 2016 Jun; 25(6):1156-60. PubMed ID: 26990788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate Methyl Group Dynamics in Protein Simulations with AMBER Force Fields.
    Hoffmann F; Mulder FAA; Schäfer LV
    J Phys Chem B; 2018 May; 122(19):5038-5048. PubMed ID: 29695158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Internal motions of apo-neocarzinostatin as studied by 13C NMR methine relaxation at natural abundance.
    Mispelter J; Lefèvre C; Adjadj E; Quiniou E; Favaudon V
    J Biomol NMR; 1995 Apr; 5(3):233-44. PubMed ID: 7787421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab Initio Prediction of NMR Spin Relaxation Parameters from Molecular Dynamics Simulations.
    Chen PC; Hologne M; Walker O; Hennig J
    J Chem Theory Comput; 2018 Feb; 14(2):1009-1019. PubMed ID: 29294268
    [No Abstract]   [Full Text] [Related]  

  • 8. Predicting NMR relaxation of proteins from molecular dynamics simulations with accurate methyl rotation barriers.
    Hoffmann F; Mulder FAA; Schäfer LV
    J Chem Phys; 2020 Feb; 152(8):084102. PubMed ID: 32113361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tryptophan sidechain dynamics in hydrophobic oligopeptides determined by use of 13C nuclear magnetic resonance spectroscopy.
    Weaver AJ; Kemple MD; Prendergast FG
    Biophys J; 1988 Jul; 54(1):1-15. PubMed ID: 3416021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Narrowing the gap between experimental and computational determination of methyl group dynamics in proteins.
    Hoffmann F; Xue M; Schäfer LV; Mulder FAA
    Phys Chem Chem Phys; 2018 Oct; 20(38):24577-24590. PubMed ID: 30226234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations.
    Liu Q; Shi C; Yu L; Zhang L; Xiong Y; Tian C
    Biochem Biophys Res Commun; 2015 Feb; 457(3):467-72. PubMed ID: 25600810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly.
    Aliev AE; Courtier-Murias D
    J Phys Chem B; 2010 Sep; 114(38):12358-75. PubMed ID: 20825228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of Molecular Dynamics Simulations of Biomolecules Using NMR Spin Relaxation as Benchmarks:  Application to the AMBER99SB Force Field.
    Showalter SA; Brüschweiler R
    J Chem Theory Comput; 2007 May; 3(3):961-75. PubMed ID: 26627416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining Molecular and Spin Dynamics Simulations with Solid-State NMR: A Case Study of Amphiphilic Lysine-Leucine Repeat Peptide Aggregates.
    Emani PS; Yimer YY; Davidowski SK; Gebhart RN; Ferreira HE; Kuprov I; Pfaendtner J; Drobny GP
    J Phys Chem B; 2019 Dec; 123(51):10915-10929. PubMed ID: 31769684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motional timescale predictions by molecular dynamics simulations: case study using proline and hydroxyproline sidechain dynamics.
    Aliev AE; Kulke M; Khaneja HS; Chudasama V; Sheppard TD; Lanigan RM
    Proteins; 2014 Feb; 82(2):195-215. PubMed ID: 23818175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational Dynamics of Two Natively Unfolded Fragment Peptides: Comparison of the AMBER and CHARMM Force Fields.
    Chen W; Shi C; MacKerell AD; Shen J
    J Phys Chem B; 2015 Jun; 119(25):7902-10. PubMed ID: 26020564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing protein side chain dynamics via 13C NMR relaxation.
    Yang D
    Protein Pept Lett; 2011 Apr; 18(4):380-95. PubMed ID: 21222636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide internal motions on nanosecond time scale derived from direct fitting of (13)C and (15)N NMR spectral density functions.
    Mayo KH; Daragan VA; Idiyatullin D; Nesmelova I
    J Magn Reson; 2000 Sep; 146(1):188-95. PubMed ID: 10968972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the Current State of Amber Force Field Modifications for DNA.
    Galindo-Murillo R; Robertson JC; Zgarbová M; Šponer J; Otyepka M; Jurečka P; Cheatham TE
    J Chem Theory Comput; 2016 Aug; 12(8):4114-27. PubMed ID: 27300587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of the GROMOS force-field parameter set 45Alpha3 against nuclear magnetic resonance data of hen egg lysozyme.
    Soares TA; Daura X; Oostenbrink C; Smith LJ; van Gunsteren WF
    J Biomol NMR; 2004 Dec; 30(4):407-22. PubMed ID: 15630561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.