BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32268068)

  • 1. Genome-Wide CRISPRi-Based Identification of Targets for Decoupling Growth from Production.
    Li S; Jendresen CB; Landberg J; Pedersen LE; Sonnenschein N; Jensen SI; Nielsen AT
    ACS Synth Biol; 2020 May; 9(5):1030-1040. PubMed ID: 32268068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPRi/dCpf1-mediated dynamic metabolic switch to enhance butenoic acid production in Escherichia coli.
    Ji X; Zhao H; Zhu H; Zhu K; Tang SY; Lou C
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5385-5393. PubMed ID: 32338294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPRi-mediated tunable control of gene expression level with engineered single-guide RNA in Escherichia coli.
    Byun G; Yang J; Seo SW
    Nucleic Acids Res; 2023 May; 51(9):4650-4659. PubMed ID: 36999618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cas9/CRISPRi tools for cell factory construction in E. coli.
    Hashemi A
    World J Microbiol Biotechnol; 2020 Jun; 36(7):96. PubMed ID: 32583135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redirecting Metabolic Flux via Combinatorial Multiplex CRISPRi-Mediated Repression for Isopentenol Production in Escherichia coli.
    Tian T; Kang JW; Kang A; Lee TS
    ACS Synth Biol; 2019 Feb; 8(2):391-402. PubMed ID: 30681833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Filamentation and restoration of normal growth in Escherichia coli using a combined CRISPRi sgRNA/antisense RNA approach.
    Mückl A; Schwarz-Schilling M; Fischer K; Simmel FC
    PLoS One; 2018; 13(9):e0198058. PubMed ID: 30204770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli.
    Kim SK; Seong W; Han GH; Lee DH; Lee SG
    Microb Cell Fact; 2017 Nov; 16(1):188. PubMed ID: 29100516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplex Generation, Tracking, and Functional Screening of Substitution Mutants Using a CRISPR/Retron System.
    Lim H; Jun S; Park M; Lim J; Jeong J; Lee JH; Bang D
    ACS Synth Biol; 2020 May; 9(5):1003-1009. PubMed ID: 32348672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Making point mutations in Escherichia coli BL21 genome using the CRISPR-Cas9 system.
    Wang X; He J; Le K
    FEMS Microbiol Lett; 2018 Jul; 365(14):. PubMed ID: 29596631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9-based genome editing for simultaneous interference with gene expression and protein stability.
    Martínez V; Lauritsen I; Hobel T; Li S; Nielsen AT; Nørholm MHH
    Nucleic Acids Res; 2017 Nov; 45(20):e171. PubMed ID: 28981713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced protein and biochemical production using CRISPRi-based growth switches.
    Li S; Jendresen CB; Grünberger A; Ronda C; Jensen SI; Noack S; Nielsen AT
    Metab Eng; 2016 Nov; 38():274-284. PubMed ID: 27647432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dose-response model for statistical analysis of chemical genetic interactions in CRISPRi screens.
    Choudhery S; DeJesus MA; Srinivasan A; Rock J; Schnappinger D; Ioerger TR
    PLoS Comput Biol; 2024 May; 20(5):e1011408. PubMed ID: 38768228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of CRISPR/Cas System to Bacterial Metabolic Engineering.
    Cho S; Shin J; Cho BK
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29621180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain.
    Park J; Shin H; Lee SM; Um Y; Woo HM
    Microb Cell Fact; 2018 Jan; 17(1):4. PubMed ID: 29316926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dual sgRNA library design to probe genetic modifiers using genome-wide CRISPRi screens.
    Guna A; Page KR; Replogle JM; Esantsi TK; Wang ML; Weissman JS; Voorhees RM
    BMC Genomics; 2023 Oct; 24(1):651. PubMed ID: 37904134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of CRISPR interference on strain development in biotechnology.
    Schultenkämper K; Brito LF; Wendisch VF
    Biotechnol Appl Biochem; 2020 Jan; 67(1):7-21. PubMed ID: 32064678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable translation-level CRISPR interference by dCas13 and engineered gRNA in bacteria.
    Kim G; Kim HJ; Kim K; Kim HJ; Yang J; Seo SW
    Nat Commun; 2024 Jun; 15(1):5319. PubMed ID: 38909033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production.
    Kim SK; Han GH; Seong W; Kim H; Kim SW; Lee DH; Lee SG
    Metab Eng; 2016 Nov; 38():228-240. PubMed ID: 27569599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted Transcriptional Repression in Bacteria Using CRISPR Interference (CRISPRi).
    Hawkins JS; Wong S; Peters JM; Almeida R; Qi LS
    Methods Mol Biol; 2015; 1311():349-62. PubMed ID: 25981485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A plasmid toolset for CRISPR-mediated genome editing and CRISPRi gene regulation in Escherichia coli.
    Jervis AJ; Hanko EKR; Dunstan MS; Robinson CJ; Takano E; Scrutton NS
    Microb Biotechnol; 2021 May; 14(3):1120-1129. PubMed ID: 33710766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.