These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 32268219)

  • 1. Experimentally-driven protein structure modeling.
    Dokholyan NV
    J Proteomics; 2020 May; 220():103777. PubMed ID: 32268219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Methods for Macromolecular Modeling by Molecular Mechanics Simulations with Experimental Data.
    Miyashita O; Tama F
    Adv Exp Med Biol; 2018; 1105():199-217. PubMed ID: 30617831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in.
    Ditzler MA; Otyepka M; Sponer J; Walter NG
    Acc Chem Res; 2010 Jan; 43(1):40-7. PubMed ID: 19754142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current Stage and Future Perspectives for Homology Modeling, Molecular Dynamics Simulations, Machine Learning with Molecular Dynamics, and Quantum Computing for Intrinsically Disordered Proteins and Proteins with Intrinsically Disordered Regions.
    Coskuner-Weber O; Uversky VN
    Curr Protein Pept Sci; 2024; 25(2):163-171. PubMed ID: 38275091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solving protein structures using short-distance cross-linking constraints as a guide for discrete molecular dynamics simulations.
    Brodie NI; Popov KI; Petrotchenko EV; Dokholyan NV; Borchers CH
    Sci Adv; 2017 Jul; 3(7):e1700479. PubMed ID: 28695211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles.
    Chan-Yao-Chong M; Durand D; Ha-Duong T
    J Chem Inf Model; 2019 May; 59(5):1743-1758. PubMed ID: 30840442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomolecular simulation: a computational microscope for molecular biology.
    Dror RO; Dirks RM; Grossman JP; Xu H; Shaw DE
    Annu Rev Biophys; 2012; 41():429-52. PubMed ID: 22577825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in coarse-grained modeling of macromolecular complexes.
    Pak AJ; Voth GA
    Curr Opin Struct Biol; 2018 Oct; 52():119-126. PubMed ID: 30508766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational ensembles of intrinsically disordered proteins and flexible multidomain proteins.
    Thomasen FE; Lindorff-Larsen K
    Biochem Soc Trans; 2022 Feb; 50(1):541-554. PubMed ID: 35129612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Simulations of Intrinsically Disordered Proteins and Their Binding Mechanisms.
    Chu X; Nagpal S; Muñoz V
    Methods Mol Biol; 2022; 2376():343-362. PubMed ID: 34845619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular simulations of proteins: From simplified physical interactions to complex biological phenomena.
    Rizzuti B
    Biochim Biophys Acta Proteins Proteom; 2022 Mar; 1870(3):140757. PubMed ID: 35051666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational ensemble of native α-synuclein in solution as determined by short-distance crosslinking constraint-guided discrete molecular dynamics simulations.
    Brodie NI; Popov KI; Petrotchenko EV; Dokholyan NV; Borchers CH
    PLoS Comput Biol; 2019 Mar; 15(3):e1006859. PubMed ID: 30917118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AI-based structure prediction empowers integrative structural analysis of human nuclear pores.
    Mosalaganti S; Obarska-Kosinska A; Siggel M; Taniguchi R; Turoňová B; Zimmerli CE; Buczak K; Schmidt FH; Margiotta E; Mackmull MT; Hagen WJH; Hummer G; Kosinski J; Beck M
    Science; 2022 Jun; 376(6598):eabm9506. PubMed ID: 35679397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid Methods for Modeling Protein Structures Using Molecular Dynamics Simulations and Small-Angle X-Ray Scattering Data.
    Ekimoto T; Ikeguchi M
    Adv Exp Med Biol; 2018; 1105():237-258. PubMed ID: 30617833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of Protein Structural Flexibility and Large-Scale Dynamics: Coarse-Grained Simulations and Elastic Network Models.
    Kmiecik S; Kouza M; Badaczewska-Dawid AE; Kloczkowski A; Kolinski A
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30404229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Markov state models provide insights into dynamic modulation of protein function.
    Shukla D; Hernández CX; Weber JK; Pande VS
    Acc Chem Res; 2015 Feb; 48(2):414-22. PubMed ID: 25625937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the Structure of Helical Assemblies with Experimental Constraints in Rosetta.
    André I
    Methods Mol Biol; 2018; 1764():475-489. PubMed ID: 29605934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid computational methods combining experimental information with molecular dynamics.
    Mondal A; Lenz S; MacCallum JL; Perez A
    Curr Opin Struct Biol; 2023 Aug; 81():102609. PubMed ID: 37224642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Perspective on the Prospective Use of AI in Protein Structure Prediction.
    Versini R; Sritharan S; Aykac Fas B; Tubiana T; Aimeur SZ; Henri J; Erard M; Nüsse O; Andreani J; Baaden M; Fuchs P; Galochkina T; Chatzigoulas A; Cournia Z; Santuz H; Sacquin-Mora S; Taly A
    J Chem Inf Model; 2024 Jan; 64(1):26-41. PubMed ID: 38124369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.