These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32268305)

  • 1. Detection of nanotesla AC magnetic fields using steady-state SIRS and ultra-low field MRI.
    Sveinsson B; Koonjoo N; Zhu B; Witzel T; Rosen MS
    J Neural Eng; 2020 Jun; 17(3):034001. PubMed ID: 32268305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive study of sensitivity in measuring oscillatory magnetic fields using rotary saturation pulse sequences.
    Sheng J; Liu Y; Chai Y; Tang W; Wu B; Gao JH
    Magn Reson Imaging; 2016 Apr; 34(3):326-33. PubMed ID: 26616004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of subnanotesla oscillatory magnetic fields using MRI.
    Jiang X; Sheng J; Li H; Chai Y; Zhou X; Wu B; Guo X; Gao JH
    Magn Reson Med; 2016 Feb; 75(2):519-26. PubMed ID: 25753110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of stimulus-induced rotary saturation on the direction of target oscillating magnetic fields: A phantom and simulation study.
    Sogabe T; Ueda H; Ito Y; Taniguchi Y; Kobayashi T
    J Magn Reson; 2020 Dec; 321():106849. PubMed ID: 33128915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An advanced phantom study assessing the feasibility of neuronal current imaging by ultra-low-field NMR.
    Körber R; Nieminen JO; Höfner N; Jazbinšek V; Scheer HJ; Kim K; Burghoff M
    J Magn Reson; 2013 Dec; 237():182-190. PubMed ID: 24252245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized 3D co-registration of ultra-low-field and high-field magnetic resonance images.
    Guidotti R; Sinibaldi R; De Luca C; Conti A; Ilmoniemi RJ; Zevenhoven KCJ; Magnelind PE; Pizzella V; Del Gratta C; Romani GL; Della Penna S
    PLoS One; 2018; 13(3):e0193890. PubMed ID: 29509780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demonstration of full tensor current density imaging using ultra-low field MRI.
    Hömmen P; Storm JH; Höfner N; Körber R
    Magn Reson Imaging; 2019 Jul; 60():137-144. PubMed ID: 30898636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of functional MRI at ultralow magnetic field via changes in cerebral blood volume.
    Buckenmaier K; Pedersen A; SanGiorgio P; Scheffler K; Clarke J; Inglis B
    Neuroimage; 2019 Feb; 186():185-191. PubMed ID: 30394329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SQUID-detected ultra-low field MRI.
    Espy M; Matlashov A; Volegov P
    J Magn Reson; 2013 Mar; 228():1-15. PubMed ID: 23333456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SQUID-sensor-based ultra-low-field MRI calibration with phantom images: towards quantitative imaging.
    Dabek J; Vesanen PT; Zevenhoven KC; Nieminen JO; Sepponen R; Ilmoniemi RJ
    J Magn Reson; 2012 Nov; 224():22-31. PubMed ID: 23000977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast Room Temperature Very Low Field-Magnetic Resonance Imaging System Compatible with MagnetoEncephaloGraphy Environment.
    Galante A; Sinibaldi R; Conti A; De Luca C; Catallo N; Sebastiani P; Pizzella V; Romani GL; Sotgiu A; Della Penna S
    PLoS One; 2015; 10(12):e0142701. PubMed ID: 26630172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel MRI at microtesla fields.
    Zotev VS; Volegov PL; Matlashov AN; Espy MA; Mosher JC; Kraus RH
    J Magn Reson; 2008 Jun; 192(2):197-208. PubMed ID: 18328753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic resonance imaging at frequencies below 1 kHz.
    Hilschenz I; Körber R; Scheer HJ; Fedele T; Albrecht HH; Mario Cassará A; Hartwig S; Trahms L; Haase J; Burghoff M
    Magn Reson Imaging; 2013 Feb; 31(2):171-7. PubMed ID: 22898690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulus-induced Rotary Saturation (SIRS): a potential method for the detection of neuronal currents with MRI.
    Witzel T; Lin FH; Rosen BR; Wald LL
    Neuroimage; 2008 Oct; 42(4):1357-65. PubMed ID: 18684643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homogeneous B0 coil design method for open-access ultra-low field magnetic resonance imaging: A simulation study.
    Karasawa T; Saikawa J; Munaka T; Kobayashi T
    Magn Reson Imaging; 2024 Oct; 112():128-135. PubMed ID: 38986889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An intra-neural microstimulation system for ultra-high field magnetic resonance imaging and magnetoencephalography.
    Glover PM; Watkins RH; O'Neill GC; Ackerley R; Sanchez-Panchuelo R; McGlone F; Brookes MJ; Wessberg J; Francis ST
    J Neurosci Methods; 2017 Oct; 290():69-78. PubMed ID: 28743633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid ultra-low-field MRI and magnetoencephalography system based on a commercial whole-head neuromagnetometer.
    Vesanen PT; Nieminen JO; Zevenhoven KC; Dabek J; Parkkonen LT; Zhdanov AV; Luomahaara J; Hassel J; Penttilä J; Simola J; Ahonen AI; Mäkelä JP; Ilmoniemi RJ
    Magn Reson Med; 2013 Jun; 69(6):1795-804. PubMed ID: 22807201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic Spatial Calibration of Ultra-Low-Field MRI for High-Accuracy Hybrid MEG-MRI.
    Makinen AJ; Zevenhoven KCJ; Ilmoniemi RJ
    IEEE Trans Med Imaging; 2019 Jun; 38(6):1317-1327. PubMed ID: 30908195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MR imaging of oscillatory magnetic field changes: Progressing from phantom to human.
    Chai Y; Sheng J; Men W; Fan Y; Wu B; Gao JH
    Magn Reson Imaging; 2017 Feb; 36():167-174. PubMed ID: 27826081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human in-vivo brain magnetic resonance current density imaging (MRCDI).
    Göksu C; Hanson LG; Siebner HR; Ehses P; Scheffler K; Thielscher A
    Neuroimage; 2018 May; 171():26-39. PubMed ID: 29288869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.