BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32268613)

  • 1. Modeling the Full Time-Dependent Phenomenology of Filled Rubber for Use in Anti-Vibration Design.
    Carleo F; Plagge J; Whear R; Busfield J; Klüppel M
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32268613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limitations of Viscoelastic Constitutive Models for Carbon-Black Reinforced Rubber in Medium Dynamic Strains and Medium Strain Rates.
    Carleo F; Barbieri E; Whear R; Busfield JJC
    Polymers (Basel); 2018 Sep; 10(9):. PubMed ID: 30960913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Influence of Colloidal Properties of Carbon Black on Static and Dynamic Mechanical Properties of Natural Rubber.
    Kyei-Manu WA; Herd CR; Chowdhury M; Busfield JJC; Tunnicliffe LB
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Large Deformation and Velocity Impacts on the Mechanical Behavior of Filled Rubber: Microstructure-Based Constitutive Modeling and Mechanical Testing.
    Wei W; Yuan Y; Gao X
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33050587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micromechanics of Stress-Softening and Hysteresis of Filler Reinforced Elastomers with Applications to Thermo-Oxidative Aging.
    Plagge J; Klüppel M
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32549387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Prestrain on Payne Effect and Hysteresis Loss of Carbon-Black-Filled Rubber Vulcanizates: Measurements and Modeling.
    Yin B; Jiao X; Wen H; Li Y; Li M
    Polymers (Basel); 2024 Feb; 16(3):. PubMed ID: 38337325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Finite Element Model for the Vibration Analysis of Sandwich Beam with Frequency-Dependent Viscoelastic Material Core.
    Huang Z; Wang X; Wu N; Chu F; Luo J
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31627297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constitutive modeling of the Mullins effect and cyclic stress softening in filled elastomers.
    Dargazany R; Itskov M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012602. PubMed ID: 23944481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Carbon Black and the Presence of Static Mechanical Strain on the Swelling of Elastomers in Solvent.
    Ch'ng SY; Andriyana A; Tee YL; Verron E
    Materials (Basel); 2015 Mar; 8(3):884-898. PubMed ID: 28787977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature Dependence of Rubber Hyper-Elasticity Based on Different Constitutive Models and Their Prediction Ability.
    Yao X; Wang Z; Ma L; Miao Z; Su M; Han X; Yang J
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Hyper-Pseudoelastic Model of Cyclic Stress-Softening Effect for Rubber Composites.
    Dong Y; Fu Y; He C; Fang D
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of the Complex Dynamic Stiffness of Inflated Rubber Diaphragms in Pneumatic Springs Using Finite Element Method.
    Shin YH; Lee JH
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-Dependence of Rubber Hyperelasticity Based on the Eight-Chain Model.
    Fu X; Wang Z; Ma L; Zou Z; Zhang Q; Guan Y
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32316485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress-Strain Response of Cylindrical Rubber Fender under Monotonic and Cyclic Compression.
    Wu CC; Chiou YC
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30654533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ability of Constitutive Models to Characterize the Temperature Dependence of Rubber Hyperelasticity and to Predict the Stress-Strain Behavior of Filled Rubber under Different Defor Mation States.
    Fu X; Wang Z; Ma L
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33503897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The development and validation of a numerical integration method for non-linear viscoelastic modeling.
    Ramo NL; Puttlitz CM; Troyer KL
    PLoS One; 2018; 13(1):e0190137. PubMed ID: 29293558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rolling friction of elastomers: role of strain softening.
    Tiwari A; Miyashita N; Persson BNJ
    Soft Matter; 2019 Dec; 15(45):9233-9243. PubMed ID: 31651922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mastering of Filled Rubber Strength beyond WLF: Competition of Temperature, Time, Crack Deflection and Bond Breaking.
    Plagge J
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of a viscoelastic damper and its application in structural control.
    Mehrabi MH; Suhatril M; Ibrahim Z; Ghodsi SS; Khatibi H
    PLoS One; 2017; 12(6):e0176480. PubMed ID: 28570657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of sliding friction and contact mechanics of elastomers based on dynamic-mechanical analysis.
    Le Gal A; Yang X; Klüppel M
    J Chem Phys; 2005 Jul; 123(1):014704. PubMed ID: 16035860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.