These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 32268737)
1. A perturbed-chain equation of state based on Wertheim TPT for the fully flexible LJ chains in the fluid and solid phases. Mirzaeinia A; Feyzi F J Chem Phys; 2020 Apr; 152(13):134502. PubMed ID: 32268737 [TBL] [Abstract][Full Text] [Related]
2. A new perturbed-chain equation of state for square-well chains in fluid and solid phases. Alavi F; Feyzi F J Chem Phys; 2013 Aug; 139(7):074104. PubMed ID: 23968069 [TBL] [Abstract][Full Text] [Related]
3. Equations of state for the fully flexible WCA chains in the fluid and solid phases based on Wertheims-TPT2. Mirzaeinia A; Feyzi F; Hashemianzadeh SM J Chem Phys; 2018 Mar; 148(10):104502. PubMed ID: 29544293 [TBL] [Abstract][Full Text] [Related]
4. The equation of state of flexible chains of tangent hard spheres at high-density region from simulation and thermodynamic perturbation theory. Alavi F; Feyzi F J Chem Phys; 2013 Jan; 138(2):024903. PubMed ID: 23320717 [TBL] [Abstract][Full Text] [Related]
5. On the vapor-liquid equilibrium of attractive chain fluids with variable degree of molecular flexibility. van Westen T; Vlugt TJ; Gross J J Chem Phys; 2015 Jun; 142(22):224504. PubMed ID: 26071717 [TBL] [Abstract][Full Text] [Related]
6. Accurate statistical associating fluid theory for chain molecules formed from Mie segments. Lafitte T; Apostolakou A; Avendaño C; Galindo A; Adjiman CS; Müller EA; Jackson G J Chem Phys; 2013 Oct; 139(15):154504. PubMed ID: 24160524 [TBL] [Abstract][Full Text] [Related]
7. Equation of state and Helmholtz free energy for the atomic system of the repulsive Lennard-Jones particles. Mirzaeinia A; Feyzi F; Hashemianzadeh SM J Chem Phys; 2017 Dec; 147(21):214503. PubMed ID: 29221393 [TBL] [Abstract][Full Text] [Related]
8. An analytical equation of state for describing isotropic-nematic phase equilibria of Lennard-Jones chain fluids with variable degree of molecular flexibility. van Westen T; Oyarzún B; Vlugt TJ; Gross J J Chem Phys; 2015 Jun; 142(24):244903. PubMed ID: 26133453 [TBL] [Abstract][Full Text] [Related]
9. Combined temperature and density series for fluid-phase properties. II. Lennard-Jones spheres. Elliott JR; Schultz AJ; Kofke DA J Chem Phys; 2019 Nov; 151(20):204501. PubMed ID: 31779334 [TBL] [Abstract][Full Text] [Related]
10. Three new branched chain equations of state based on Wertheim's perturbation theory. Marshall BD; Chapman WG J Chem Phys; 2013 May; 138(17):174109. PubMed ID: 23656116 [TBL] [Abstract][Full Text] [Related]
11. Scaling laws for the equation of state of flexible and linear tangent hard sphere chains. Vega C; McBride C Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):052501. PubMed ID: 12059618 [TBL] [Abstract][Full Text] [Related]
13. High-density equation of state for a two-dimensional Lennard-Jones solid. Shi K; Gu K; Shen Y; Srivastava D; Santiso EE; Gubbins KE J Chem Phys; 2018 May; 148(17):174505. PubMed ID: 29739216 [TBL] [Abstract][Full Text] [Related]
14. Computer simulation study of the global phase behavior of linear rigid Lennard-Jones chain molecules: comparison with flexible models. Galindo A; Vega C; Sanz E; MacDowell LG; de Miguel E; Blas FJ J Chem Phys; 2004 Feb; 120(8):3957-68. PubMed ID: 15268561 [TBL] [Abstract][Full Text] [Related]
15. Perturbed-chain equation of state for the solid phase. Cochran TW; Chiew YC J Chem Phys; 2006 Jun; 124(22):224901. PubMed ID: 16784308 [TBL] [Abstract][Full Text] [Related]
16. An equation of state for Stockmayer fluids based on a perturbation theory for dipolar hard spheres. Theiss M; van Westen T; Gross J J Chem Phys; 2019 Sep; 151(10):104102. PubMed ID: 31521101 [TBL] [Abstract][Full Text] [Related]
17. A global investigation of phase equilibria using the perturbed-chain statistical-associating-fluid-theory approach. Yelash L; Müller M; Paul W; Binder K J Chem Phys; 2005 Jul; 123(1):014908. PubMed ID: 16035870 [TBL] [Abstract][Full Text] [Related]
18. Performance evaluation of third-order thermodynamic perturbation theory and comparison with existing liquid state theories. Zhou S J Phys Chem B; 2007 Sep; 111(36):10736-44. PubMed ID: 17713938 [TBL] [Abstract][Full Text] [Related]
19. Extension of Wertheim's thermodynamic perturbation theory to include higher order graph integrals. Zmpitas W; Gross J J Chem Phys; 2019 Jun; 150(24):244902. PubMed ID: 31255093 [TBL] [Abstract][Full Text] [Related]
20. Generalized coupling parameter expansion: application to square well and Lennard-Jones fluids. Sai Venkata Ramana A J Chem Phys; 2013 Jul; 139(4):044106. PubMed ID: 23901959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]