These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 32269386)
1. Universal Hitting Time Statistics for Integrable Flows. Dettmann CP; Marklof J; Strömbergsson A J Stat Phys; 2017; 166(3):714-749. PubMed ID: 32269386 [TBL] [Abstract][Full Text] [Related]
2. Multiple returns for some regular and mixing maps. Haydn N; Lunedei E; Rossi L; Turchetti G; Vaienti S Chaos; 2005 Sep; 15(3):33109. PubMed ID: 16252983 [TBL] [Abstract][Full Text] [Related]
3. Statistics of Poincaré recurrences for maps with integrable and ergodic components. Hu H; Rampioni A; Rossi L; Turchetti G; Vaienti S Chaos; 2004 Mar; 14(1):160-71. PubMed ID: 15003057 [TBL] [Abstract][Full Text] [Related]
4. Gaussian orthogonal ensemble statistics in graphene billiards with the shape of classically integrable billiards. Yu P; Li ZY; Xu HY; Huang L; Dietz B; Grebogi C; Lai YC Phys Rev E; 2016 Dec; 94(6-1):062214. PubMed ID: 28085331 [TBL] [Abstract][Full Text] [Related]
5. Poncelet property and quasi-periodicity of the integrable Boltzmann system. Felder G Lett Math Phys; 2021; 111(1):12. PubMed ID: 33568886 [TBL] [Abstract][Full Text] [Related]
6. The role of dissipation in time-dependent non-integrable focusing billiards. Ryabov AB; Loskutov A Chaos; 2012 Jun; 22(2):026121. PubMed ID: 22757580 [TBL] [Abstract][Full Text] [Related]
8. Turbulent transport of suspended particles and dispersing benthic organisms: the hitting-distance problem for the local exchange model. McNair JN; Newbold JD J Theor Biol; 2001 Apr; 209(3):351-69. PubMed ID: 11312595 [TBL] [Abstract][Full Text] [Related]
9. Quantum chaotic trajectories in integrable right triangular billiards. de Sales JA; Florencio J Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016216. PubMed ID: 12636594 [TBL] [Abstract][Full Text] [Related]
10. Elliptic Flowers: New Types of Dynamics to Study Classical and Quantum Chaos. Attarchi H; Bunimovich LA Entropy (Basel); 2022 Sep; 24(9):. PubMed ID: 36141109 [TBL] [Abstract][Full Text] [Related]
11. Chaos and the continuum limit in the gravitational N-body problem: integrable potentials. Kandrup HE; Sideris IV Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056209. PubMed ID: 11736056 [TBL] [Abstract][Full Text] [Related]
13. Mushrooms and other billiards with divided phase space. Bunimovich LA Chaos; 2001 Dec; 11(4):802-808. PubMed ID: 12779519 [TBL] [Abstract][Full Text] [Related]
14. Dynamical Criticality of Magnetization Transfer in Integrable Spin Chains. Krajnik Ž; Schmidt J; Ilievski E; Prosen T Phys Rev Lett; 2024 Jan; 132(1):017101. PubMed ID: 38242668 [TBL] [Abstract][Full Text] [Related]
15. No-slip billiards with particles of variable mass distribution. Ahmed J; Cox C; Wang B Chaos; 2022 Feb; 32(2):023102. PubMed ID: 35232024 [TBL] [Abstract][Full Text] [Related]
16. Statistics of wave functions and currents induced by spin-orbit interaction in chaotic billiards. Bulgakov EN; Sadreev AF Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056211. PubMed ID: 15600732 [TBL] [Abstract][Full Text] [Related]
17. Mixing property of symmetrical polygonal billiards. Carmo RBD; Lima TA Phys Rev E; 2024 Jan; 109(1-1):014224. PubMed ID: 38366409 [TBL] [Abstract][Full Text] [Related]
18. Billiards: a singular perturbation limit of smooth Hamiltonian flows. Rom-Kedar V; Turaev D Chaos; 2012 Jun; 22(2):026102. PubMed ID: 22757561 [TBL] [Abstract][Full Text] [Related]