These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 32269402)

  • 1. Multiscale Method for Oseen Problem in Porous Media with Non-periodic Grain Patterns.
    Muljadi BP
    Transp Porous Media; 2017; 116(1):1-18. PubMed ID: 32269402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A partially penalty immersed Crouzeix-Raviart finite element method for interface problems.
    An N; Yu X; Chen H; Huang C; Liu Z
    J Inequal Appl; 2017; 2017(1):186. PubMed ID: 28855785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite Element Iterative Methods for the 3D Steady Navier--Stokes Equations.
    He Y
    Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mesoscopic bridging scale method for fluids and coupling dissipative particle dynamics with continuum finite element method.
    Kojic M; Filipovic N; Tsuda A
    Comput Methods Appl Mech Eng; 2013 Jan; 197(6-8):821-833. PubMed ID: 23814322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher Order Multiscale Finite Element Method for Heat Transfer Modeling.
    Klimczak M; Cecot W
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media.
    Icardi M; Boccardo G; Marchisio DL; Tosco T; Sethi R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013032. PubMed ID: 25122394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergence-free tangential finite element methods for incompressible flows on surfaces.
    Lederer PL; Lehrenfeld C; Schöberl J
    Int J Numer Methods Eng; 2020 Jun; 121(11):2503-2533. PubMed ID: 34853485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-dimensional non-hydrostatic coupled model for free surface - Subsurface variable - Density flows.
    Shokri N; Namin MM; Farhoudi J
    J Contam Hydrol; 2018 Sep; 216():38-49. PubMed ID: 30126718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A stable numerical method for the dynamics of fluidic membranes.
    Barrett JW; Garcke H; Nürnberg R
    Numer Math (Heidelb); 2016; 134(4):783-822. PubMed ID: 28603298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore-scale modeling of dispersion in disordered porous media.
    Ovaysi S; Piri M
    J Contam Hydrol; 2011 Jun; 124(1-4):68-81. PubMed ID: 21440952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.
    Pau GS; Almgren AS; Bell JB; Lijewski MJ
    Philos Trans A Math Phys Eng Sci; 2009 Nov; 367(1907):4633-54. PubMed ID: 19840985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesoscale dynamic coupling of finite- and discrete-element methods for fluid-particle interactions.
    Srivastava S; Yazdchi K; Luding S
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2021):. PubMed ID: 24982251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive transport in porous media: pore-network model approach compared to pore-scale model.
    Varloteaux C; Vu MT; Békri S; Adler PM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023010. PubMed ID: 23496613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice Boltzmann model for incompressible axisymmetric thermal flows through porous media.
    Grissa K; Chaabane R; Lataoui Z; Benselama A; Bertin Y; Jemni A
    Phys Rev E; 2016 Oct; 94(4-1):043306. PubMed ID: 27841484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lattice Boltzmann model for incompressible flows through porous media.
    Guo Z; Zhao TS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036304. PubMed ID: 12366250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low Reynolds Number Interactions between Colloidal Particles near the Entrance to a Cylindrical Pore.
    Ramachandran V; Venkatesan R; Tryggvason G; Scott Fogler H
    J Colloid Interface Sci; 2000 Sep; 229(2):311-322. PubMed ID: 10985810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macroscopic momentum and mechanical energy equations for incompressible single-phase flow in porous media.
    Paéz-García CT; Valdés-Parada FJ; Lasseux D
    Phys Rev E; 2017 Feb; 95(2-1):023101. PubMed ID: 28297957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical analysis of blood flow through a stenosed artery using a coupled, multiscale simulation method.
    Shim EB; Kamm RD; Heldt T; Mark RG
    Comput Cardiol; 2000; 27():219-22. PubMed ID: 12085933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Coupled Method for Multiscale and Phase Analysis.
    Tak M; Park D; Park T
    J Eng Mater Technol; 2013 Apr; 135(2):210131-2101311. PubMed ID: 23918471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of wettability on two-phase quasi-static displacement: Validation of two pore scale modeling approaches.
    Verma R; Icardi M; Prodanović M
    J Contam Hydrol; 2018 May; 212():115-133. PubMed ID: 29395376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.