These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Abnormal permeability pathways in human red blood cells. Ellory JC; Robinson HC; Browning JA; Stewart GW; Gehl KA; Gibson JS Blood Cells Mol Dis; 2007; 39(1):1-6. PubMed ID: 17434766 [TBL] [Abstract][Full Text] [Related]
3. Erythrocyte ATP, a possible therapeutic approach for sickle cell disease. Hoffman JF Am J Hematol; 2019 May; 94(5):E117. PubMed ID: 30681180 [No Abstract] [Full Text] [Related]
4. New insights provided by a comparison of impaired deformability with erythrocyte oxidative stress for sickle cell disease. Barodka VM; Nagababu E; Mohanty JG; Nyhan D; Berkowitz DE; Rifkind JM; Strouse JJ Blood Cells Mol Dis; 2014 Apr; 52(4):230-5. PubMed ID: 24246527 [TBL] [Abstract][Full Text] [Related]
5. Singer K, Fisher B. Studies on abnormal hemoglobins, VI: electrophoretic demonstration of type S (sickle cell) hemoglobin in erythrocytes incapable of showing the sickle cell phenomenon. Blood. 1953;8(3):270-275. Blood; 2016 Feb; 127(7):791. PubMed ID: 26893392 [No Abstract] [Full Text] [Related]
6. The effect of abnormal hemoglobins on the membrane regulation of cell hydration. Clark MR; Shohet SB Tex Rep Biol Med; 1980-1981; 40():417-29. PubMed ID: 7034277 [TBL] [Abstract][Full Text] [Related]
7. Hybrid erythrocytes for membrane studies in sickle cell disease. Clark MR; Shohet SB Blood; 1976 Jan; 47(1):121-31. PubMed ID: 1244907 [TBL] [Abstract][Full Text] [Related]
8. A Ca2+-refractory state of the Ca-sensitive K+ permeability mechanism in sickle cell anaemia red cells. Lew VL; Bookchin RM Biochim Biophys Acta; 1980 Oct; 602(1):196-200. PubMed ID: 6251886 [TBL] [Abstract][Full Text] [Related]
12. Non-uniformity of intracellular polymer formation in sickle erythrocytes: possible correlation with severity of hemolytic anemia. Noguchi CT; Schechter AN Am J Pediatr Hematol Oncol; 1984; 6(1):46-50. PubMed ID: 6711762 [TBL] [Abstract][Full Text] [Related]
13. The sickle erythrocyte in double jeopardy: autoxidation and iron decompartmentalization. Hebbel RP Semin Hematol; 1990 Jan; 27(1):51-69. PubMed ID: 2405496 [No Abstract] [Full Text] [Related]
15. Sickle red cell microrheology and sickle blood rheology. Ballas SK; Mohandas N Microcirculation; 2004 Mar; 11(2):209-25. PubMed ID: 15280093 [TBL] [Abstract][Full Text] [Related]
16. Red cell calcium content and transmembrane calcium movements in sickle cell anemia. Palek J; Thomae M; Ozog D J Lab Clin Med; 1977 Jun; 89(6):1365-74. PubMed ID: 864308 [No Abstract] [Full Text] [Related]
17. The intracellular polymerization of sickle hemoglobin and its relevance to sickle cell disease. Noguchi CT; Schechter AN Blood; 1981 Dec; 58(6):1057-68. PubMed ID: 7030432 [No Abstract] [Full Text] [Related]
18. Membrane modifiers in sickle cell disease. Benjamin LJ Ann N Y Acad Sci; 1989; 565():247-61. PubMed ID: 2672964 [No Abstract] [Full Text] [Related]
19. Dependence of spectrin organization in red blood cell membranes on cell metabolism: implications for control of red cell shape, deformability, and surface area. Palek J; Liu SC Semin Hematol; 1979 Jan; 16(1):75-93. PubMed ID: 154737 [No Abstract] [Full Text] [Related]