BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32269790)

  • 1. The interaction between map complexity and crowd movement on navigation decisions in virtual reality.
    Zhao H; Thrash T; Grossrieder A; Kapadia M; Moussaïd M; Hölscher C; Schinazi VR
    R Soc Open Sci; 2020 Mar; 7(3):191523. PubMed ID: 32269790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual Sensing and Virtual Reality: How New Technologies Can Boost Research on Crowd Dynamics.
    Moussaïd M; Schinazi VR; Kapadia M; Thrash T
    Front Robot AI; 2018; 5():82. PubMed ID: 33500961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crowd Navigation in VR: Exploring Haptic Rendering of Collisions.
    Berton F; Grzeskowiak F; Bonneau A; Jovane A; Aggravi M; Hoyet L; Olivier AH; Pacchierotti C; Pettre J
    IEEE Trans Vis Comput Graph; 2022 Jul; 28(7):2589-2601. PubMed ID: 33253117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Networked Desktop Virtual Reality Setup for Decision Science and Navigation Experiments with Multiple Participants.
    Zhao H; Thrash T; Wehrli S; Hölscher C; Kapadia M; Grübel J; Weibel RP; Schinazi VR
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30199016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating Human Movement Coordination During Immersive Walking in a Virtual Crowd.
    Koilias A; Nelson M; Gubbi S; Mousas C; Anagnostopoulos CN
    Behav Sci (Basel); 2020 Aug; 10(9):. PubMed ID: 32867234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using spontaneous eye blink-related brain activity to investigate cognitive load during mobile map-assisted navigation.
    Cheng B; Lin E; Wunderlich A; Gramann K; Fabrikant SI
    Front Neurosci; 2023; 17():1024583. PubMed ID: 36866330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the Relationship Between Attribute Discrepancy and Avatar Embodiment in Immersive Social Virtual Reality.
    DeVeaux C; Han E; Landay JA; Bailenson JN
    Cyberpsychol Behav Soc Netw; 2023 Oct; ():. PubMed ID: 37851990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mirror in the sky: assessment of an augmented reality method for depicting navigational information.
    Reiner AJ; Hollands JG; Jamieson GA; Boustila S
    Ergonomics; 2020 May; 63(5):548-562. PubMed ID: 32200733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. With or Without You: Effect of Contextual and Responsive Crowds on VR-based Crowd Motion Capture.
    Yin T; Hoyet L; Christie M; Cani MP; Pettre J
    IEEE Trans Vis Comput Graph; 2024 May; 30(5):2785-2795. PubMed ID: 38437106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of virtual reality environments on overground walking in people with Parkinson disease and freezing of gait.
    Yamagami M; Imsdahl S; Lindgren K; Bellatin O; Nhan N; Burden SA; Pradhan S; Kelly VE
    Disabil Rehabil Assist Technol; 2023 Apr; 18(3):266-273. PubMed ID: 33155870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing crowd management strategies for the 2010 Love Parade disaster using computer simulations and virtual reality.
    Zhao H; Thrash T; Kapadia M; Wolff K; Hölscher C; Helbing D; Schinazi VR
    J R Soc Interface; 2020 Jun; 17(167):20200116. PubMed ID: 32517631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating schematic route maps in wayfinding tasks for in-car navigation.
    Galvão ML; Krukar J; Schwering A
    Cartogr Geogr Inf Sci; 2021; 48(5):449-469. PubMed ID: 34531704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual navigation tested on a mobile app is predictive of real-world wayfinding navigation performance.
    Coutrot A; Schmidt S; Coutrot L; Pittman J; Hong L; Wiener JM; Hölscher C; Dalton RC; Hornberger M; Spiers HJ
    PLoS One; 2019; 14(3):e0213272. PubMed ID: 30883560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wayfinding and Glaucoma: A Virtual Reality Experiment.
    Daga FB; Macagno E; Stevenson C; Elhosseiny A; Diniz-Filho A; Boer ER; Schulze J; Medeiros FA
    Invest Ophthalmol Vis Sci; 2017 Jul; 58(9):3343-3349. PubMed ID: 28687845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guided by gaze: Prioritization strategy when navigating through a virtual crowd can be assessed through gaze activity.
    Meerhoff LA; Bruneau J; Vu A; Olivier AH; Pettré J
    Acta Psychol (Amst); 2018 Oct; 190():248-257. PubMed ID: 30149239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliability of the triangle completion test in the real-world and in virtual reality.
    McLaren R; Chaudhary S; Rashid U; Ravindran S; Taylor D
    Front Hum Neurosci; 2022; 16():945953. PubMed ID: 36034112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual Reality Air Travel Training Using Apple iPhone X and Google Cardboard: A Feasibility Report with Autistic Adolescents and Adults.
    Miller IT; Miller CS; Wiederhold MD; Wiederhold BK
    Autism Adulthood; 2020 Dec; 2(4):325-333. PubMed ID: 36600956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Naturalistic visualization of reaching movements using head-mounted displays improves movement quality compared to conventional computer screens and proves high usability.
    Wenk N; Buetler KA; Penalver-Andres J; Müri RM; Marchal-Crespo L
    J Neuroeng Rehabil; 2022 Dec; 19(1):137. PubMed ID: 36494668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing an augmented reality navigation display to an electronic map for military reconnaissance.
    Reiner AJ; Vasquez HM; Jamieson GA; Hollands JG
    Ergonomics; 2022 Jan; 65(1):78-90. PubMed ID: 34392815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Risks to pedestrians in traffic systems with unfamiliar driving rules: a virtual reality approach.
    Ye Y; Wong SC; Li YC; Lau YK
    Accid Anal Prev; 2020 Jul; 142():105565. PubMed ID: 32361475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.