BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 32269994)

  • 1. The Influence of Neuron-Extrinsic Factors and Aging on Injury Progression and Axonal Repair in the Central Nervous System.
    Sutherland TC; Geoffroy CG
    Front Cell Dev Biol; 2020; 8():190. PubMed ID: 32269994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair.
    Gaudet AD; Mandrekar-Colucci S; Hall JC; Sweet DR; Schmitt PJ; Xu X; Guan Z; Mo X; Guerau-de-Arellano M; Popovich PG
    J Neurosci; 2016 Aug; 36(32):8516-32. PubMed ID: 27511021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The age factor in axonal repair after spinal cord injury: A focus on neuron-intrinsic mechanisms.
    Geoffroy CG; Meves JM; Zheng B
    Neurosci Lett; 2017 Jun; 652():41-49. PubMed ID: 27818358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of PTEN and Nogo Codeletion on Corticospinal Axon Sprouting and Regeneration in Mice.
    Geoffroy CG; Lorenzana AO; Kwan JP; Lin K; Ghassemi O; Ma A; Xu N; Creger D; Liu K; He Z; Zheng B
    J Neurosci; 2015 Apr; 35(16):6413-28. PubMed ID: 25904793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for an Age-Dependent Decline in Axon Regeneration in the Adult Mammalian Central Nervous System.
    Geoffroy CG; Hilton BJ; Tetzlaff W; Zheng B
    Cell Rep; 2016 Apr; 15(2):238-46. PubMed ID: 27050519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulating Axonal Responses to Injury: The Intersection between Signaling Pathways Involved in Axon Myelination and The Inhibition of Axon Regeneration.
    Rao SN; Pearse DD
    Front Mol Neurosci; 2016; 9():33. PubMed ID: 27375427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extrinsic and intrinsic regulation of axon regeneration at a crossroads.
    Kaplan A; Ong Tone S; Fournier AE
    Front Mol Neurosci; 2015; 8():27. PubMed ID: 26136657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of Axon Elongation Following CNS Injury: What Is Happening at the Axon Tip?
    Rodemer W; Gallo G; Selzer ME
    Front Cell Neurosci; 2020; 14():177. PubMed ID: 32719586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of timing in the treatment of spinal cord injury.
    Saghazadeh A; Rezaei N
    Biomed Pharmacother; 2017 Aug; 92():128-139. PubMed ID: 28535416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extrinsic and Intrinsic Regulation of Axon Regeneration by MicroRNAs after Spinal Cord Injury.
    Li P; Teng ZQ; Liu CM
    Neural Plast; 2016; 2016():1279051. PubMed ID: 27818801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Olfactory ensheathing cells: bridging the gap in spinal cord injury.
    Bartolomei JC; Greer CA
    Neurosurgery; 2000 Nov; 47(5):1057-69. PubMed ID: 11063098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epac2 Elevation Reverses Inhibition by Chondroitin Sulfate Proteoglycans
    Guijarro-Belmar A; Viskontas M; Wei Y; Bo X; Shewan D; Huang W
    J Neurosci; 2019 Oct; 39(42):8330-8346. PubMed ID: 31409666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental cues determine the fate of astrocytes after spinal cord injury.
    Nathan FM; Li S
    Neural Regen Res; 2017 Dec; 12(12):1964-1970. PubMed ID: 29323029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attenuated Reactive Gliosis and Enhanced Functional Recovery Following Spinal Cord Injury in Null Mutant Mice of Platelet-Activating Factor Receptor.
    Wang Y; Gao Z; Zhang Y; Feng SQ; Liu Y; Shields LBE; Zhao YZ; Zhu Q; Gozal D; Shields CB; Cai J
    Mol Neurobiol; 2016 Jul; 53(5):3448-3461. PubMed ID: 26084439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-type specific expression of constitutively-active Rheb promotes regeneration of bulbospinal respiratory axons following cervical SCI.
    Urban MW; Ghosh B; Strojny LR; Block CG; Blazejewski SM; Wright MC; Smith GM; Lepore AC
    Exp Neurol; 2018 May; 303():108-119. PubMed ID: 29453976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effect of aging on axon sprouting and regenerative growth in spinal cord injury.
    Jaerve A; Schiwy N; Schmitz C; Mueller HW
    Exp Neurol; 2011 Oct; 231(2):284-94. PubMed ID: 21806987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glial Cell-Axonal Growth Cone Interactions in Neurodevelopment and Regeneration.
    Rigby MJ; Gomez TM; Puglielli L
    Front Neurosci; 2020; 14():203. PubMed ID: 32210757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of RhoA in retrograde neuronal death and axon regeneration after spinal cord injury.
    Hu J; Zhang G; Rodemer W; Jin LQ; Shifman M; Selzer ME
    Neurobiol Dis; 2017 Feb; 98():25-35. PubMed ID: 27888137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polycaprolactone/polysialic acid hybrid, multifunctional nanofiber scaffolds for treatment of spinal cord injury.
    Zhang S; Wang XJ; Li WS; Xu XL; Hu JB; Kang XQ; Qi J; Ying XY; You J; Du YZ
    Acta Biomater; 2018 Sep; 77():15-27. PubMed ID: 30126591
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 22.