BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32270268)

  • 21. Butterfly phenology in Mediterranean mountains using space-for-time substitution.
    Zografou K; Grill A; Wilson RJ; Halley JM; Adamidis GC; Kati V
    Ecol Evol; 2020 Jan; 10(2):928-939. PubMed ID: 32015855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plant population differentiation and climate change: responses of grassland species along an elevational gradient.
    Frei ER; Ghazoul J; Matter P; Heggli M; Pluess AR
    Glob Chang Biol; 2014 Feb; 20(2):441-55. PubMed ID: 24115364
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Active around the year: Butterflies and moths adapt their life cycles to a warming world.
    Habel JC; Schmitt T; Gros P; Ulrich W
    Glob Chang Biol; 2024 Jan; 30(1):e17103. PubMed ID: 38273556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Patterns and drivers of intraspecific variation in avian life history along elevational gradients: a meta-analysis.
    Alice Boyle W; Sandercock BK; Martin K
    Biol Rev Camb Philos Soc; 2016 May; 91(2):469-82. PubMed ID: 25765584
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Seasonal differences in climate change explain a lack of multi-decadal shifts in population characteristics of a pond breeding salamander.
    Kirk MA; Galatowitsch ML; Wissinger SA
    PLoS One; 2019; 14(9):e0222097. PubMed ID: 31491025
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Divergent phenological response to hydroclimate variability in forested mountain watersheds.
    Hwang T; Band LE; Miniat CF; Song C; Bolstad PV; Vose JM; Love JP
    Glob Chang Biol; 2014 Aug; 20(8):2580-95. PubMed ID: 24677382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Population Trends of Central European Montane Birds Provide Evidence for Adverse Impacts of Climate Change on High-Altitude Species.
    Flousek J; Telenský T; Hanzelka J; Reif J
    PLoS One; 2015; 10(10):e0139465. PubMed ID: 26426901
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strong evidence for changing fish reproductive phenology under climate warming on the Tibetan Plateau.
    Tao J; He D; Kennard MJ; Ding C; Bunn SE; Liu C; Jia Y; Che R; Chen Y
    Glob Chang Biol; 2018 May; 24(5):2093-2104. PubMed ID: 29331066
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of regional climate warming on the phenology of butterflies in boreal forests in Manitoba, Canada.
    Westwood AR; Blair D
    Environ Entomol; 2010 Aug; 39(4):1122-33. PubMed ID: 22127162
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Elevation increases in moth assemblages over 42 years on a tropical mountain.
    Chen IC; Shiu HJ; Benedick S; Holloway JD; Chey VK; Barlow HS; Hill JK; Thomas CD
    Proc Natl Acad Sci U S A; 2009 Feb; 106(5):1479-83. PubMed ID: 19164573
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Taxonomy, together with ontogeny and growing conditions, drives needleleaf species' sensitivity to climate in boreal North America.
    Marchand W; Girardin MP; Hartmann H; Gauthier S; Bergeron Y
    Glob Chang Biol; 2019 Aug; 25(8):2793-2809. PubMed ID: 31012507
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tell me what you eat and I'll tell you when you fly: diet can predict phenological changes in response to climate change.
    Altermatt F
    Ecol Lett; 2010 Dec; 13(12):1475-84. PubMed ID: 20937056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Limited alpine climatic warming and modeled phenology advancement for three alpine species in the Northeast United States.
    Kimball KD; Davis ML; Weihrauch DM; Murray GL; Rancourt K
    Am J Bot; 2014 Sep; 101(9):1437-46. PubMed ID: 25253704
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Climate change effects on animal ecology: butterflies and moths as a case study.
    Hill GM; Kawahara AY; Daniels JC; Bateman CC; Scheffers BR
    Biol Rev Camb Philos Soc; 2021 Oct; 96(5):2113-2126. PubMed ID: 34056827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Precipitation buffers temperature-driven local extinctions of moths at warm range margins.
    Hordley LA; Fox R; Suggitt AJ; Bourn NAD
    Ecol Lett; 2023 May; 26(5):805-815. PubMed ID: 36946283
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in the distribution of multispecies pest assemblages affect levels of crop damage in warming tropical Andes.
    Crespo-Pérez V; Régnière J; Chuine I; Rebaudo F; Dangles O
    Glob Chang Biol; 2015 Jan; 21(1):82-96. PubMed ID: 24920187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of rewilding, species introductions and climate change on the structure and function of the Yukon boreal forest ecosystem.
    Boonstra R; Boutin S; Jung TS; Krebs CJ; Taylor S
    Integr Zool; 2018 Mar; 13(2):123-138. PubMed ID: 29168615
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial and climatic variables independently drive elevational gradients in ant species richness in the Eastern Himalaya.
    Marathe A; Priyadarsanan DR; Krishnaswamy J; Shanker K
    PLoS One; 2020; 15(1):e0227628. PubMed ID: 31940414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Forest defoliator outbreaks under climate change: effects on the frequency and severity of outbreaks of five pine insect pests.
    Haynes KJ; Allstadt AJ; Klimetzek D
    Glob Chang Biol; 2014 Jun; 20(6):2004-18. PubMed ID: 24464875
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Climate change and community disassembly: impacts of warming on tropical and temperate montane community structure.
    Sheldon KS; Yang S; Tewksbury JJ
    Ecol Lett; 2011 Dec; 14(12):1191-200. PubMed ID: 21978234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.